Bienvenue sur Laurentvidal.fr, où vous pouvez obtenir des réponses fiables et rapides grâce à nos experts. Rejoignez notre plateforme de questions-réponses pour vous connecter avec des experts dédiés à fournir des réponses précises à vos questions dans divers domaines. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses.

Bonsoir pourriez vous s'il vous plait m'aider pour cette exercice merci

L'escalier du pilier Est de la tour Eiffel, permettant
d'accéder au sommet de la tour, possède 1165
marches. Norman, situé au sommet, descend trois
marches par seconde, alors que Igor, situé en bas de
la tour, monte deux marches par seconde.
Pour tout entier naturel n, on note un (respectivement vn) le
nombre de marches qui séparent Norman (respectivement Igor)
du rez-de-chaussée au bout de n secondes.

1. Déterminer uo, Vo, u1, et v1.
2. Exprimer Un+1 en fonction de Un puis Vn+1 en fonction de Vn. Déterminer la nature de chaque suite. Justifier.
3. Exprimer Un , puis Vn, en fonction de n.
4. Déterminer, en justifiant, le sens de variation de
chacune des deux suites.
5. Au bout de combien de secondes Norman et Igor
vont-ils se croiser ? Sur quelle marche se croiseront-ils?


Sagot :

Réponse :

1)   Déterminer uo, Vo, u1, et v1.

U0 = 1165  ;  U1 = 1165 - 3 = 1162

V0 = 0   ;  V1 = 2

2. Exprimer Un+1 en fonction de Un puis Vn+1 en fonction de Vn. Déterminer la nature de chaque suite. Justifier.  

Un+1 = Un - 3  et  Vn+1 = Vn + 2

(Un)  et (Vn)  sont des suites arithmétiques de raison r = - 3  et  r' = 2

car  Un = Un + r   et Vn+1 = Vn + r'

3. Exprimer Un , puis Vn, en fonction de n.

Un = U0 + n r = 1165 - 3 n   et  Vn = V0 + n r' = 0 + 2 n = 2 n

4. Déterminer, en justifiant, le sens de variation de chacune des deux suites.

Un+1 = Un - 3   ⇔ Un+1 - Un = - 3  < 0  ⇒ (Un) est une suite décroissante sur N

Vn+1 = Vn + 2  ⇔ Vn+1 - Vn = 2 > 0 ⇒ (Vn) est une suite croissante sur N

5. Au bout de combien de secondes Norman et Igor

vont-ils se croiser ? Sur quelle marche se croiseront-ils?

on écrit  Un = Vn  ⇔ 1165 - 3 n = 2 n  ⇔ 1165 = 5 n  ⇔ n = 1165/5 = 233 s

233 x 2 = 466 marches

donc ils se croisent sur la 466 marches

Explications étape par étape :

Merci de votre passage. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. À bientôt. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Laurentvidal.fr, votre site de référence pour des réponses précises. N'oubliez pas de revenir pour en savoir plus.