Laurentvidal.fr vous aide à trouver des réponses précises à toutes vos questions grâce à une communauté d'experts chevronnés. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.

Bonsoir,
Exercice niveau seconde
Merci de votre aide

Dans cette partie, on admet que les fonctions f et g sont définies sur [-2; 4] par f(x) = (x + 1)(6 - 2x) et g(x) = x² + 2x + 1 .

1. Montrer que f(x) = - 2 (x - 1)² + 8 pour tout réel x de [-2;4]. ​

Sagot :

bonjour

f(x) = (x + 1)(6 - 2x)   et f(x) = -2(x - 1)² + 8

on développe les deux formes et on les compare :

• f(x) = (x + 1)(6 - 2x)

 f(x) = 6x - 2x² + 6 - 2x

 f(x) = -2x² + 4x + 6

f(x) = -2(x - 1)² + 8

f(x) = -2(x² - 2x + 1) + 8

    = -2x² + 4x -2 + 8

    = -2x² + 4x + 6

on trouve le même trinôme

f(x) = -2x² + 4x + 6        forme développée de f(x)

f(x) = (x + 1)(6 - 2x)         forme factorisée de f(x)

f(x) = -2(x - 1)² + 8          forme canonique de f(x)