Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses. Expérimentez la commodité de trouver des réponses précises à vos questions grâce à une communauté dévouée d'experts.

Bonsoir, j’aimerais savoir si on peut m’aider pour cette exercice s’il vous plaît? Merci beaucoup pour ceux qui le feront !!

Bonsoir Jaimerais Savoir Si On Peut Maider Pour Cette Exercice Sil Vous Plaît Merci Beaucoup Pour Ceux Qui Le Feront class=

Sagot :

OzYta

Bonjour,

Les deux premières questions ont été réalisées.

3) On a [tex]f'(x)=(2x+3)e^{x}[/tex]

  • Or, on sait que [tex]e^{x} > 0[/tex] sur [tex]$\mathbf{R}[/tex].
  • De plus, on a : [tex]2x+3\geq 0[/tex]

SSI [tex]2x\geq -3[/tex]

SSI [tex]x\geq -\frac{3}{2}[/tex]

Ainsi, [tex]f'[/tex] est négative sur l'intervalle [tex]]-\infty;-\frac{3}{2}][/tex] et positive sur l'intervalle [tex][-\frac{3}{2};+\infty[[/tex].

D'où le tableau de variations de [tex]f[/tex] :

Valeurs de [tex]x[/tex]     [tex]-\infty[/tex]                                        [tex]-\frac{3}{2}[/tex]                                         [tex]+\infty[/tex]

Signe de [tex]f'(x)[/tex]                           -                       0                      +

Variations de [tex]f[/tex]                        [tex]$\searrow[/tex]                  -0.446                  [tex]$\nearrow[/tex]

Tu peux également rédiger ensuite ;)

4) a) Cherchons l'équation de tangente à [tex]C_{f}[/tex] au point d'abscisse 0.

On a :

  • [tex]f(x)=(2x+1)e^{x}[/tex]
  • [tex]f'(x)=(2x+3)e^{x}[/tex]

Donc :

  • [tex]f(0)=(2\times 0+1)e^{0}=1\times 1=1[/tex]
  • [tex]f'(0)=(2\times 0+3)e^{0}=3\times 1=3[/tex]

Ainsi, l'équation de tangente à [tex]C_{f}[/tex] au point d'abscisse 0 est :

[tex]y=f'(0)(x-0)+f(0)\\y=3(x-0)+1\\y=3x-0+1\\y=3x+1[/tex]

A toi de finir :)

En espérant t'avoir aidé.