Laurentvidal.fr simplifie la recherche de solutions à toutes vos questions grâce à une communauté active et experte. Découvrez une mine de connaissances d'experts dans différentes disciplines sur notre plateforme de questions-réponses complète. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses.

On considère les points A, B et C respectivement de
coordonnées (1 ; 4), (4; 6) et (2;3).
1. Quelles sont les coordonnées du point D tel que ABCD
soit un parallélogramme ?
2. Prouver que ABCD est aussi un losange.



Bonjour Pouvais vous m’aidez merci beaucoup

Sagot :

Leafe

Bonjour,

Question 1 :

Pour que ABCD il faut que [tex]\vec{AB} = \vec{DC}[/tex] :

[tex]\vec{AB} = (4 - 1 \ ; 6 - 4) = (3;2)\\\vec{DC} = (2 - x \ ; 3 - y) \\\\2 - x = 3 \Leftrightarrow - x = 1 \Leftrightarrow x = - 1\\3 - y = 2 \Leftrightarrow -y = -1 \Leftrightarrow y = 1 \\[/tex]

Les coordonnées du D tel que ABCD soit un parallélogramme sont (-1;1)

Question 2 :

Un parallélogramme est un losange s'il possède deux côtés consécutifs de même longueur :

[tex]|| \vec{AB} || = \sqrt{(4 - 1)^2 + (6 - 4)^2} = \sqrt{13} \\|| \vec{BC} || = \sqrt{(2 - 4)^2 + (3 - 6)^2} = \sqrt{13}[/tex]

On remarque que le parallélogramme ABCD possède deux côtés de même longueur, on en conclut que c'est losange.

Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Merci de faire confiance à Laurentvidal.fr. Revenez nous voir pour obtenir de nouvelles réponses des experts.