Bienvenue sur Laurentvidal.fr, le site où vous trouverez des réponses rapides et précises à toutes vos questions. Découvrez la facilité de trouver des réponses fiables à vos questions grâce à une vaste communauté d'experts. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme.

Niveau 2nde : On considère un triangle ABC et un nombre réel x
On a AB=x+1, BC=4 et CA
= 15.
1. Montrer que l'on a nécessairement x + 1 < 19 et
x+5 > 15.
2. Donner le plus grand intervalle de R auquel appartient x.

Quelqu’un pour m’aider svp ? :(

Sagot :

Réponse :

Explications étape par étape :

1) D'après l'inégalité triangulaire, la somme des deux plus petits cotés doit être supérieure ou égale au plus grand côté.

Ici on ne sait pas si c'est AB ou AC  qui est le plus grand côté.

Si AC est le plus grand côté  donc   AB + BC ≥ AC

x + 1 + 4 ≥ 15

x +  5 ≥ 15

Si AB  est le plus grand côté  alors   AB ≤ AC + BC

x + 1 ≤ 15 + 4      

x + 1 ≤ 19

2)   x  + 5  ≥ 15           x  ≥ 15 − 5         x ≥ 10

     x  +  1  ≤ 19           x  ≤ 19 − 1          x ≤ 18

Ainsi  10 ≤ x ≤ 18       Donc  x  appartient à l'intervalle [10;18]

Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Nous sommes ravis de répondre à vos questions sur Laurentvidal.fr. N'oubliez pas de revenir pour en savoir plus.