Trouvez des réponses facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Découvrez une mine de connaissances d'experts dans différentes disciplines sur notre plateforme de questions-réponses complète. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale.
Sagot :
Bonsoir,
1)On sait que, dans un triangle équilatéral, toutes les droites remarquables sont confondues. Donc, en plus d'être la hauteur de ABC issue de A, (AH) est aussi la médianne de ABC issue de A. Donc H milieu de [BC}, donc BH= 3cm
2)Comme le triangle ABH est rectangle en H, on a, d'après le théorème de Pythagore :
AB^2[tex]AB^2 = AH^2+BH^2\\ AH^2 = AB^2-BH^2\\ AH = \sqrt{AB^2-BH^2} = \sqrt{36-9} = \sqrt{27} = 3\sqrt{3}[/tex]
3)Comme ABC est équilatéral, tous ses angles sont égaux à 60°, donc l'angle ABH mesure 60°. Comme ABH est rectangle en H, on peut écrire :
[tex]\cos 60\char23 = cos \whdehat{ABH} = \frac{HB}{BA} = \frac{1}{2}[/tex]
4)De même,
[tex]\sin 60\char23 = \sin \widehat{ABH} = \frac{AH}{AB} = \frac{3\sqrt{3}}{6} = \frac{\sqrt{3}}{2}[/tex]
5)On a :
[tex]\tan 60\char23 = \frac{\sin 60\char23}{\cos 60\char23} = \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} = \sqrt{3}[/tex]
6)7)8)On sait que l'angle BAH mesure 30°, donc, en utilisant les mêmes méthodes, on obtient :
[tex]\sin 30\char23 = \frac{1}{2}\\ \cos 30\char23 = \frac{\sqrt{3}}{2}\\ \tan 30\char23 = \frac{\sqrt{3}}{3}[/tex]
Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et les informations de nos experts.