Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté dédiée d'experts sur notre plateforme de questions-réponses.

Pouvez vous d'aider à résoudre c'est devoir, please.
Construire un triangle équilatéral ABC tel que AB = 6cm.
On appelle H le pied de la hauteur issue de A.
Calculer les valeurs exactes de :
1) BH 2) AH 3) cos60• 4) sin60• 5) tan60• 6) sin30• 7) cos30• 8) tan30•
(Vous donnerez chaque fois les explications nécessaires )


Sagot :

xxx102

Bonsoir,

 

1)On sait que, dans un triangle équilatéral, toutes les droites remarquables sont confondues. Donc, en plus d'être la hauteur de ABC issue de A, (AH) est aussi la médianne de ABC issue de A. Donc H milieu de [BC}, donc BH= 3cm

 

2)Comme le triangle ABH est rectangle en H, on a, d'après le théorème de Pythagore :

AB^2[tex]AB^2 = AH^2+BH^2\\ AH^2 = AB^2-BH^2\\ AH = \sqrt{AB^2-BH^2} = \sqrt{36-9} = \sqrt{27} = 3\sqrt{3}[/tex]

 

3)Comme ABC est équilatéral, tous ses angles sont égaux à 60°, donc l'angle ABH mesure 60°. Comme ABH est rectangle en H, on peut écrire :

[tex]\cos 60\char23 = cos \whdehat{ABH} = \frac{HB}{BA} = \frac{1}{2}[/tex]

 

4)De même,

[tex]\sin 60\char23 = \sin \widehat{ABH} = \frac{AH}{AB} = \frac{3\sqrt{3}}{6} = \frac{\sqrt{3}}{2}[/tex]

 

5)On a :

[tex]\tan 60\char23 = \frac{\sin 60\char23}{\cos 60\char23} = \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} = \sqrt{3}[/tex]

 

6)7)8)On sait que l'angle BAH mesure 30°, donc, en utilisant les mêmes méthodes, on obtient :

[tex]\sin 30\char23 = \frac{1}{2}\\ \cos 30\char23 = \frac{\sqrt{3}}{2}\\ \tan 30\char23 = \frac{\sqrt{3}}{3}[/tex]

Nous apprécions votre visite. Nous espérons que les réponses trouvées vous ont été bénéfiques. N'hésitez pas à revenir pour plus d'informations. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Laurentvidal.fr est là pour fournir des réponses précises à vos questions. Revenez bientôt pour plus d'informations.