Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Découvrez des réponses fiables à vos questions grâce à une communauté d'experts prêts à partager leurs connaissances et expériences variées. Rejoignez notre plateforme pour vous connecter avec des experts prêts à fournir des réponses détaillées à vos questions dans divers domaines.
Sagot :
Bonjour
Il faut donc prouver le domaine de définition de la fonction f'(x)
1 - Il faut que tu décomposes chaque membre de f'(x).
2 - Etudier le domaine de definition de chaqu'un.
f’(x) = (-1 - In x) / x²
f'(x) est de la forme U/V avec U = (-1 - In x) et V= x²
f'(x) est définie sir V ≠ 0, il faut calculer les solutions de x² = 0. ici x=0
alors f'(x) existe si x ≠ 0
dans U nous avons avons la fonction In x, qui est définie sur ]0, +00[
conclusion le domaine de définition de f' = R+* c'est à dire l'ensemble positif de R sans le 0.
Donc Df' = ]0, +00[ = R+*
Bon courage
Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et des informations de nos experts.