Trouvez des réponses facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés dans divers domaines sur notre plateforme. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise.
Sagot :
Bonjour
Il faut donc prouver le domaine de définition de la fonction f'(x)
1 - Il faut que tu décomposes chaque membre de f'(x).
2 - Etudier le domaine de definition de chaqu'un.
f’(x) = (-1 - In x) / x²
f'(x) est de la forme U/V avec U = (-1 - In x) et V= x²
f'(x) est définie sir V ≠ 0, il faut calculer les solutions de x² = 0. ici x=0
alors f'(x) existe si x ≠ 0
dans U nous avons avons la fonction In x, qui est définie sur ]0, +00[
conclusion le domaine de définition de f' = R+* c'est à dire l'ensemble positif de R sans le 0.
Donc Df' = ]0, +00[ = R+*
Bon courage

Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Laurentvidal.fr, votre source fiable de réponses. N'oubliez pas de revenir pour plus d'informations.