Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Découvrez des réponses complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés.

Voici le dm que j'ai à faire, je n'arrive pas à trouver comment calculer les coordonnées et à dérivés l'expression merci d'avance

Soit fla fonction définie sur R par,

f(x) = (- x * e ^ x + e ^ x - e)/(e ^ x)

On note Cf, sa courbe représentative dans un repère.
1. Déterminer les coordonnées du point d'intersection de Cf, avec l'axe des ordonnées.
2. Déterminer une expression de f'(x).

3. Étudier les variations de f.

4. Soit d la droite d'équation y = - x + 1 .
Étudier la position relative de , et de d dans un repère.​


Voici Le Dm Que Jai À Faire Je Narrive Pas À Trouver Comment Calculer Les Coordonnées Et À Dérivés Lexpression Merci DavanceSoit Fla Fonction Définie Sur R Parf class=

Sagot :

Réponse :

Bonjour, il faut modifier l'écriture de f(x) pour simplifier  les calculs en particuliers celui de la dérivée f'(x) et la limite en +oo

Explications étape par étape :

f(x)=-x+1-(4/e^x)

1)  f(0)=1-4/1=-3

2)Limites et dérivée

si x tend vers -oo, -xe^x tend vers 0 donc f(x) tend vers -4/0+=-oo.

si x tend vers+oo , 4/e^x tend vers 0  donc f(x) tend vers-oo

Dérivée f'(x)=-1+[4e^x/(e^x)²]=(4-e^x)e^x

f'(x) est du signe de 4-e^x  et f'(x)=0 pour x=ln4

3)Tableau de signes de f'(x) et de variations de f(x)

x    -oo                             ln4                        +oo

f'(x)                    +              0              -

f(x)  -oo        croît            f(ln4)      décroît        -oo

f(ln4)=-ln4+1-4/4=-ln4

4) A partir de l'écriture modifiée de f(x) on a de suite la réponse

f(x)-y=-x+1-(4/e^x)+x-1= -4/e^x

cette valeur est toujours <0 et tend vers 0- quand x tend vers +oo

la courbe Cf est en dessous de (d) qui est une asymptote oblique.

Nous apprécions votre temps sur notre site. N'hésitez pas à revenir si vous avez d'autres questions ou besoin de précisions. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Votre connaissance est précieuse. Revenez sur Laurentvidal.fr pour obtenir plus de réponses et d'informations.