Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines. Découvrez des réponses détaillées à vos questions grâce à un vaste réseau de professionnels sur notre plateforme de questions-réponses complète.

Bonjour, j'ai un DM à faire pour lundi en maths et je comprends pas comment m'y prendre pouvez-vous m'aider s'il vous plait.

 

Voici l'exercice:

ABCD est carré de coté1.

a) Expliquer pourquoi AC= √2

b) Donnez la mesure de l'angle BAC

     Expliquez pourquoi cos45°=√2

                                                          2

c) En déduire que sin45°= √2, puis que tan45°=1

                                                   2

Sagot :

xxx102

Bonjour,

 

a)Le triangle ADC est rectangle en A, donc, d'après le théorème de Pythagore,

[tex]AC^2 = AD^2+DC^2\\ AC = \sqrt{AD^2+DC^2}\\ AC = \sqrt{1+1} = \sqrt{2}[/tex]

 

b)Comme ABCD est un carré, c'est aussi un losange particulier.

Comme (AC) est la diagonnale de ce carré, alors elle est aussi la bissectrice de l'angle BAC.

Donc, [tex]\widehat{BAC} = \frac{\widehat{BAD}}{2} = \frac{90}{2} = 45\char23[/tex]

 

Ensuite, comme ABC est rectangle en B, on a :

[tex]\cos \widehat{BAC} = \frac{BA}{AC} = \frac{1}{\sqrt{2}} = \frac{1 \times \sqrt{2}}{\sqrt{2}\times \sqrt{2}} = \frac{\sqrt{2}}{2}[/tex]

 

c)[tex]\sin \widehat{BAC} = \frac{BC}{AC}\\ \text{Or }BC = AB = 1\\ \sin \widehat{BAC} = \cos\widehat{BAC} = \frac{\sqrt{2}}{2}\\ \sin 45\char23 = \cos 45\char23 = \frac{\sqrt{2}}{2}[/tex]

 

[tex]\tan \widehat{BAC} = \tan 45\char23 = \frac{\sin 45\char23}{\cos 45 \char23} = \frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}} = 1[/tex]