Laurentvidal.fr facilite la recherche de réponses à toutes vos questions avec l'aide de notre communauté active. Obtenez des réponses rapides à vos questions grâce à un réseau de professionnels expérimentés sur notre plateforme de questions-réponses. Obtenez des solutions rapides et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.

Bonjour j’ai besoin d’aide pour un exercice de mon dm de maths je suis en 2nde. Merci


Bonjour Jai Besoin Daide Pour Un Exercice De Mon Dm De Maths Je Suis En 2nde Merci class=

Sagot :

Réponse :

Partie 1

1) justifier que le triangle ABC est rectangle en A

  AB²+AC² = 4²+3² = 25

   BC² = 5² = 25

donc on a bien l'égalité BC² = AB²+AC²  on en déduit donc d'après la réciproque du th.Pythagore que le triangle ABC est rectangle en A

2) (a) calculer cos (^B) et sin (^B)

  cos (^B) = AB/BC = 4/5

   sin (^B) = AC/BC = 3/5

    (b) en déduire la relation (cos (^B))²+(sin(^B))² = 1

    (cos (^B))²+(sin(^B))² = (4/5)²+(3/5)²

                                      = (4²/5² + 3²/5²)

                                      = (4²+3²)/5²

                                      = 5²/5²

                                      = 1

3) vérifier qu'on a aussi    (cos (^C))²+(sin(^C))² = 1  

(cos (^C))²+(sin(^C))² = (3/5)²+(4/5)²

                                 = 3²/5² + 4²/5²

                                 = (3²+4²)/5²

                                 = 5²/5²

                                 = 1

Partie 2                

 4) justifier que l'on a    (b) en déduire la relation (cos (^B))²+(sin(^B))² = 1

    (cos (^B))²+(sin(^B))² = (AB/BC)²+(AC/BC)²

                                      = (AB²/BC² + AC²/BC²)

                                      = (AB²+AC²)/BC²

                                      = BC²/BC²

                                      = 1

4) justifier que l'on a   (cos (^B))²+(sin(^B))² = (AB²+AC²)/BC²

dans le triangle ABC rectangle en A

cos (^B) = AB/BC  et sin (^B) = AC/BC

    (cos (^B))²+(sin(^B))² = (AB/BC)²+(AC/BC)²

                                      = (AB²/BC² + AC²/BC²)

                                      = (AB²+AC²)/BC²

   5)  justifier alors qu'on a     (cos (^B))²+(sin(^B))² = 1

 (cos (^B))²+(sin(^B))² =  (AB²+AC²)/BC²     or d'après le th.Pythagore

on a BC² = AB²+AC²

donc   (cos (^B))²+(sin(^B))² =  (AB²+AC²)/BC²  = BC²/BC² = 1                            

Explications étape par étape :

Merci de votre passage. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. À bientôt. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Merci d'utiliser Laurentvidal.fr. Continuez à nous rendre visite pour trouver des réponses à vos questions.