Bienvenue sur Laurentvidal.fr, la meilleure plateforme de questions-réponses pour trouver des réponses précises et rapides à toutes vos questions. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme. Découvrez la facilité d'obtenir des réponses rapides et précises à vos questions grâce à l'aide de professionnels sur notre plateforme.

Bonjour j’ai besoin d’aide pour un exercice de mon dm de maths je suis en 2nde. Merci


Bonjour Jai Besoin Daide Pour Un Exercice De Mon Dm De Maths Je Suis En 2nde Merci class=

Sagot :

Réponse :

Partie 1

1) justifier que le triangle ABC est rectangle en A

  AB²+AC² = 4²+3² = 25

   BC² = 5² = 25

donc on a bien l'égalité BC² = AB²+AC²  on en déduit donc d'après la réciproque du th.Pythagore que le triangle ABC est rectangle en A

2) (a) calculer cos (^B) et sin (^B)

  cos (^B) = AB/BC = 4/5

   sin (^B) = AC/BC = 3/5

    (b) en déduire la relation (cos (^B))²+(sin(^B))² = 1

    (cos (^B))²+(sin(^B))² = (4/5)²+(3/5)²

                                      = (4²/5² + 3²/5²)

                                      = (4²+3²)/5²

                                      = 5²/5²

                                      = 1

3) vérifier qu'on a aussi    (cos (^C))²+(sin(^C))² = 1  

(cos (^C))²+(sin(^C))² = (3/5)²+(4/5)²

                                 = 3²/5² + 4²/5²

                                 = (3²+4²)/5²

                                 = 5²/5²

                                 = 1

Partie 2                

 4) justifier que l'on a    (b) en déduire la relation (cos (^B))²+(sin(^B))² = 1

    (cos (^B))²+(sin(^B))² = (AB/BC)²+(AC/BC)²

                                      = (AB²/BC² + AC²/BC²)

                                      = (AB²+AC²)/BC²

                                      = BC²/BC²

                                      = 1

4) justifier que l'on a   (cos (^B))²+(sin(^B))² = (AB²+AC²)/BC²

dans le triangle ABC rectangle en A

cos (^B) = AB/BC  et sin (^B) = AC/BC

    (cos (^B))²+(sin(^B))² = (AB/BC)²+(AC/BC)²

                                      = (AB²/BC² + AC²/BC²)

                                      = (AB²+AC²)/BC²

   5)  justifier alors qu'on a     (cos (^B))²+(sin(^B))² = 1

 (cos (^B))²+(sin(^B))² =  (AB²+AC²)/BC²     or d'après le th.Pythagore

on a BC² = AB²+AC²

donc   (cos (^B))²+(sin(^B))² =  (AB²+AC²)/BC²  = BC²/BC² = 1                            

Explications étape par étape :