Trouvez des réponses facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Rejoignez notre plateforme de questions-réponses pour obtenir des informations précises d'experts dans divers domaines. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

Bonjour, j'ai un DM de maths et je bloque sur le dernier exercice, je vous donnes la consigne :
Soit u ∈ a R . On pose m(u)=3u-1 et p(u)=5-2u.
f(u) est une famille de fonctions affines définies sur R par f(u)(x)=m(u)x+p .
Déterminer le réel lambda qui possède la même image par toutes les fonctions f(u) . Quelle est cette image ?

Sagot :

Réponse :

Salut !

Pas mal comme exercice pour manipuler des concepts.

Soit lambda ce réel, on va noter mu son image :

[tex]\forall u \in \mathbb R, \mu = \left[f(u)\right](\lambda) = m(u)\lambda + p(u)[/tex]

Là on a plusieurs façons de procéder pour faire une analyse, on peut gagner du temps en dérivant par rapport à u :

[tex]0 = \frac{d\mu}{du} =m'(u) \lambda + p'(u) = 3 \lambda -2[/tex]

Donc lambda = 2/3 est la seule solution sous réserve d'existence.

Maintenant je te laisse faire la synthèse (prouver que 2/3 fonctionne) et calculer son image par tous les f(u)...

Explications étape par étape :

Nous apprécions votre temps sur notre site. N'hésitez pas à revenir si vous avez d'autres questions ou besoin de précisions. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Merci d'avoir visité Laurentvidal.fr. Revenez bientôt pour plus d'informations utiles et des réponses de nos experts.