Obtenez les meilleures solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme.

Bonjour j’ai ce DM, pour lundi, si quelqu’un pourrai m’aider s’il vous plaît. Merci

Bonjour Jai Ce DM Pour Lundi Si Quelquun Pourrai Maider Sil Vous Plaît Merci class=

Sagot :

Tenurf

Bjr

1.a f est dérivable sur IR comme somme de fonctions qui le sont et

pour x réel

[tex]f'(x)=1-cos(x)\geq 0\\\\ car \ \ cos(x)\leq 1[/tex]

f est donc croissante sur IR

b.

Comme f est donc croissante sur IR, pour tout x positif

[tex]0\leq x\\\\f(0)\leq f(x)[/tex]

et comme f(0)=0-0=0, nous avons

[tex]f(x)\geq 0 < = > x-sin(x)\geq 0 < = > sin(x)\leq x\\\\x \in [0;+\infty[[/tex]

2.

a) f est définie sur IR et f est dérivable sur IR comme somme de fonctions qui le sont et

pour x réel

[tex]f'(x)=-x+sin(x)=-(x-sinx(x))\leq 0 \ pour \ x\geq 0[/tex]

On retrouve la fonction de la question précédente

donc f est décroissante sur IR+

b)

idem comme f(0)=1-0-1=0 nous avons pour tout x réel positif

[tex]f(x)\geq 0\\\\1-\dfrac{x^2}{2}\leq cos(x)[/tex]

3.

a

C'est la même idée et on va retrouver les fonctions précédentes

Je te laisse le faire et dis moi si tu rencontres des difficultés.

Merci