Trouvez des réponses facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Rejoignez notre plateforme de questions-réponses et connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions. Obtenez des solutions rapides et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.

Bonsoir pouvez vous m’aider pour l’exercice 53 svp Merci.

Bonsoir Pouvez Vous Maider Pour Lexercice 53 Svp Merci class=

Sagot :

Réponse : voir explication

Explications étape par étape :

1) f = u + v , dérivable sur R et [tex]f'(x) = 5x^{4} - 3[/tex]

2) g = uv , dérivable sur ]o ; + ∞[ car la fonction racine n'est dérivable que sur cet intervalle.

(uv)' = u'v + uv'

[tex]g'(x) = -9\sqrt{x} + (8 - 9x)\frac{1}{2\sqrt{x} } = -9\sqrt{x} + (8 - 9x)\frac{\sqrt{x} }{2x} = \frac{\sqrt{x} }{x} (-9x + 4 - 4,5x)[/tex]

3) h sous la forme [tex]\frac{u}{v}[/tex] derivable sur R privé de -1.

([tex]\frac{u}{v}[/tex])' = [tex]\frac{u'v - uv'}{v^{2} }[/tex]

[tex]h(x) = \frac{3(x + 1) - 1(3x - 11) }{(x + 1)^{2} } = \frac{14}{(x + 1)^{2} }[/tex]

4) i sous la forme [tex]\frac{1}{v}[/tex] dérivable sur R privé de [tex]\sqrt{7}[/tex] et de [tex]-\sqrt{7}[/tex] :

([tex]\frac{1}{v}[/tex])' = [tex]\frac{-v'}{v^{2} }[/tex]

[tex]i(x) = \frac{-2x}{(x^{2} -7)^{2} }[/tex]

 

Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Nous sommes ravis de répondre à vos questions sur Laurentvidal.fr. N'oubliez pas de revenir pour en savoir plus.