Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Rejoignez notre plateforme de questions-réponses pour obtenir des informations précises d'experts dans divers domaines. Découvrez des solutions fiables à vos questions grâce à un vaste réseau d'experts sur notre plateforme de questions-réponses complète.

Bonsoir pouvez vous m’aider pour l’exercice 53 svp Merci.

Bonsoir Pouvez Vous Maider Pour Lexercice 53 Svp Merci class=

Sagot :

Réponse : voir explication

Explications étape par étape :

1) f = u + v , dérivable sur R et [tex]f'(x) = 5x^{4} - 3[/tex]

2) g = uv , dérivable sur ]o ; + ∞[ car la fonction racine n'est dérivable que sur cet intervalle.

(uv)' = u'v + uv'

[tex]g'(x) = -9\sqrt{x} + (8 - 9x)\frac{1}{2\sqrt{x} } = -9\sqrt{x} + (8 - 9x)\frac{\sqrt{x} }{2x} = \frac{\sqrt{x} }{x} (-9x + 4 - 4,5x)[/tex]

3) h sous la forme [tex]\frac{u}{v}[/tex] derivable sur R privé de -1.

([tex]\frac{u}{v}[/tex])' = [tex]\frac{u'v - uv'}{v^{2} }[/tex]

[tex]h(x) = \frac{3(x + 1) - 1(3x - 11) }{(x + 1)^{2} } = \frac{14}{(x + 1)^{2} }[/tex]

4) i sous la forme [tex]\frac{1}{v}[/tex] dérivable sur R privé de [tex]\sqrt{7}[/tex] et de [tex]-\sqrt{7}[/tex] :

([tex]\frac{1}{v}[/tex])' = [tex]\frac{-v'}{v^{2} }[/tex]

[tex]i(x) = \frac{-2x}{(x^{2} -7)^{2} }[/tex]

 

Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Merci d'utiliser Laurentvidal.fr. Continuez à nous rendre visite pour trouver des réponses à vos questions.