Bienvenue sur Laurentvidal.fr, où vous pouvez obtenir des réponses fiables et rapides grâce à nos experts. Découvrez la facilité d'obtenir des réponses rapides et précises à vos questions grâce à l'aide de professionnels sur notre plateforme. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace.
Sagot :
Bonjour,
Résoudre algébriquement chaque inéquation :
- x(x - 1)(x - 2) > 0
1. On cherche les valeurs qui annulent l'expression:
x(x - 1)(x - 2) = 0
Équation produit nul : Un produit est nul si et seulement si au moins un de ses facteurs est nul.
>> Soit x = 0
>> Soit x - 1 = 0
x = 1
>> Soit x - 2 = 0
x = 2
2. On dresse notre tableau de signes:
x | -∞ 0 1 2 +∞
----------------------------------------------------------------
x | - Φ + + +
----------------------------------------------------------------
x - 1 | - - Φ + +
----------------------------------------------------------------
x - 2 | - - - Φ +
------------------------------------------------------------------
x(x - 1)(x - 2) | - Φ + Φ - Φ +
3. Résolution de l'inéquation :
S= ] 0 ; 1 [ U ] 2 ; +∞ [
✅
- x²(x + 3) < 0
1. On cherche les valeurs qui annulent l'expression:
x²(x + 3) = 0
Équation produit nul: Un produit est nul si et seulement si au moins un de ses facteurs est nul.
>> Soit x² = 0
x = √0
x = 0
>> Soit x + 3 = 0
x = -3
2. On dresse notre tableau de signes :
x | -∞ -3 0 +∞
----------------------------------------------------------------
x² | + + Φ +
----------------------------------------------------------------
x + 3 | - Φ + +
----------------------------------------------------------------
x²(x + 3) | - Φ + Φ +
3. Résolution de l'inéquation :
S= ] -∞ ; -3 [
✅
(Tableaux également ajoutés en PJ)
Bonne journée


Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Nous sommes heureux de répondre à vos questions. Revenez sur Laurentvidal.fr pour obtenir plus de réponses.