Obtenez des solutions à vos questions sur Laurentvidal.fr, la plateforme de questions-réponses la plus réactive et fiable. Explorez des milliers de questions et réponses fournies par une communauté d'experts prêts à vous aider à trouver des solutions. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses.

bonjour aidez moi svp
Exercice 2 On considère les droites (BD) et (CN) sécantes en 0, A est un point de (CN) et M un point de (BD) tel que: Les droites (BN), (AM) et (CD) sont paralleles entre elles. D М. N А С B 1. Donner tous les rapports de longueurs égaux à : OM OB a. b. OD OM 2. On nous donne les mesures suivantes : NO = 5 cm ; OA= 4 cm ; OM = 3 cm AC = 2 cm ; CD= 3 cm a. Determiner la mesure du segment (BO). b. Déterminer la longueur AM. Puis, en déduire la longueur BN.​

Bonjour Aidez Moi SvpExercice 2 On Considère Les Droites BD Et CN Sécantes En 0 A Est Un Point De CN Et M Un Point De BD Tel Que Les Droites BN AM Et CD Sont Pa class=

Sagot :

1-a OM/OD = OA/OC = MA/DC

b OB/OM = ON/OA = NB/MA

2-a Il faut faire un produit en croix ici : OB/OM = ON/OA soit OB/3 = 5/4 donc OB = 3*4/5 = 2,4 cm

b- Dans OMA :

- M appartient à [OD]

- A appartient à [OC]

- [MA] et [DC] sont parallèles

D'après le théorème de Thalès,

OM/OD = OA/OC = MA/DC

soit 3/OD = 4/6 = MA/3 par un produit en croix MA= 4*3/6 = 2.

Dans OBN :

- A appartient à ON

-M appartient à BO

-NB et MA sont parallèles

D'après la réciproque du théorème de Thalès :

ON/OA = OB/OM = NB/MA

soit 5/4 = 5/3 = NB/2 le produit en croix : NB = 5*2/3 ≈ 3,33

Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Nous sommes heureux de répondre à vos questions. Revenez sur Laurentvidal.fr pour obtenir plus de réponses.