Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la meilleure plateforme de Q&R. Connectez-vous avec des professionnels sur notre plateforme pour recevoir des réponses précises à vos questions de manière rapide et efficace. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace.

Aide moi svp.
Dans la séquence [tex]a_n[/tex]: [tex]0 < a_1 < 1[/tex] et [tex]a_{2n} =a_2a_n + 1[/tex], [tex]a_{2n + 1} = a_2a_n - 2[/tex] pour tous [tex]n \geqslant 1[/tex]. Trouver [tex]a_2[/tex], si [tex]a_7 = 2[/tex].

Sagot :

Tenurf

Bjr

Nous pouvons écrire les relations suivantes

[tex]a_2=a_2a_1+1\\\\a_3=a_2a_1-2\\\\a_7=a_2a_3-2[/tex]

Donc si [tex]a_7=2[/tex] nous avons

[tex]a_2(a_2a_1-2)-2=2[/tex]

or comme [tex]a_2=a_2a_1+1, a_2a_1=a_2-1[/tex] et alors

l'équation [tex]a_2(a_2a_1-2)-2=2[/tex] devient

[tex]a_2(a_2-1-2)-4=0\\\\ < = > \\\\a_2^2-3a_2-4=0\\\\ < = > \\\\(a_2+1)(a_2-4)=0\\\\ < = > a_2=-1 \ ou \ a_2=4[/tex]

Mais [tex]a_2=-1[/tex] donnerait [tex]-1=-a_1+1 < = > a_1=2[/tex] ce qui n'est pas possible car [tex]0 < a_1 < 1[/tex]

et pour a_2=4, nous avons bien

[tex]0 < a_1=1-\dfrac1{4} < 1[/tex]

Donc

[tex]\boxed{a_2=4}[/tex]

Merci

Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Laurentvidal.fr est toujours là pour fournir des réponses précises. Revenez nous voir pour les informations les plus récentes.