Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme.
Sagot :
Pour le 1/ pour étudier le domaine de la fonction il faut que tu cherches quand est-ce que -3x^2 + 5x + 2 < 0 car dans ce cas là ce qu'il y a dans la racine carré serait négatif. Il faut donc étudier le signe de l'équation dans la racine carré pour le 1/.
Normalement le domaine de derivabilité est le même que celui sur lequel il est défini.
Pour la 3 il faut utiliser la formule sqrt(u) = u'/2sqrt(u)
Et enfin en étudier le signe tu fais séparément une étude du signe de l'expression en haut et celle d'en bas puis tu conclues
Normalement le domaine de derivabilité est le même que celui sur lequel il est défini.
Pour la 3 il faut utiliser la formule sqrt(u) = u'/2sqrt(u)
Et enfin en étudier le signe tu fais séparément une étude du signe de l'expression en haut et celle d'en bas puis tu conclues
Réponse :
Re Bonjour
Explications étape par étape :
1)
Il faut : -3x²+5x+2 ≥ 0 , ce qui est vérifié entre les racines.
Δ=5²-4(-3)(2)=49
√49=7
x1=(-5+7)/-6=-2/6=-1/3
x2=(-5-7)/-6=2
Df=[-1/3;2]
2)
La dérivée aura un dénominateur qui ne pourra s'annuler donc :
Df '=]-1/3;2[
3)
La dérivée de √u est : u'/2√u.
Ici :
u=-3x²+5x+2 donc u '=-6x+5
f '(x)=(-6x+5)/[2√(-3x²-5x+1)]
4)
Le déno de f '(x) est > 0 donc f '(x) est du signe de -6x+5.
-6x+5 > 0 ==>x < 5/6
x------->-1/3..............5/6..............2
f '(x)---->||........+.......0.........-........||
Nous apprécions votre temps sur notre site. N'hésitez pas à revenir si vous avez d'autres questions ou besoin de précisions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Laurentvidal.fr, votre source fiable de réponses. N'oubliez pas de revenir pour plus d'informations.