Obtenez les meilleures solutions à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Découvrez des réponses fiables à vos questions grâce à une communauté d'experts prêts à partager leurs connaissances et expériences variées. Découvrez la facilité d'obtenir des réponses rapides et précises à vos questions grâce à l'aide de professionnels sur notre plateforme.
Sagot :
Réponse :
Bonsoir,
Explications étape par étape :
On considère les suites (un) et (vn) définies pour tout entier naturel n par:
u0=1; un+1=(3un+2vn)/5
v0 = 2; vn+1=(2un+3vn)/5
a.
1. Calculer u1, V1, U2 et V2.
2. On considère la suite (dn) définie pour tout entier naturel n par dn=vn-1
(ici c'est dn=vn-un )
A.montrer que la suite (dn) est une suite géométrique dont on donnera sa raison et son premier terme
B. En déduire l’expression de dn en fonction de n
3) On considère la suite (Sn) définie pour tout entier naturel n par Sn=un + vn
A. Calculer S0, S1 et S2. Que peut-on conjecturer ?
B. Montrer que, pour tout n(appartenant)N, Sn+1=Sn.
Qu’en déduit t’on?
4. En déduire une expression de un et vn en fonction de n
5.Déterminer, en fonction de n:
A) Tn= u0+u1+….+un
B) Wn= w0+w1+…+wn
(ici c'est Wn=v0+v1+v2+...+vn)
[tex]1)\\\left \{ \begin {array}{ccc}u_0&=&1\\v_0&=&2\\\\u_{n+1}&=&\dfrac{3}{5} *u_n+\dfrac{2}{5}*v_n \\\\v_{n+1}&=&\dfrac{2}{5} *u_n+\dfrac{3}{5}*v_n \\\end{array}\right.\\\\u_1=\dfrac{3}{5} *1+\dfrac{2}{5}*2=\dfrac{7}{5} \\\\v_1=\dfrac{2}{5} *1+\dfrac{3}{5}*2=\dfrac{8}{5} \\\\\\u_2=\dfrac{3}{5} *\dfrac{7}{5} +\dfrac{2}{5}*\dfrac{8}{5} =\dfrac{37}{25} \\\\v_2=\dfrac{2}{5} *\dfrac{7}{5} +\dfrac{3}{5}*\dfrac{8}{5} =\dfrac{38}{25} \\\\[/tex]
2)
A)
[tex]d_n=v_n-u_n\\\\d_{n+1}=v_{n+1}-u_{n+1}=\dfrac{2}{5} *u_n+\dfrac{3}{5} *v_n-\dfrac{3}{5} *u_n-\dfrac{2}{5} *v_n\\=-\dfrac{1}{5} *u_n+\dfrac{1}{5} *v_n\\=\dfrac{1}{5} *(v_n-u_n)\\\\\boxed{d_{n+1}=\dfrac{1}{5} *d_n}\\[/tex]
d_n est donc géométrique de raison 1/5
d_0=1/5*(2-1)=1/5
B)
[tex]d_n=\dfrac{1}{5} *(\dfrac{1}{5})^n\\=(\dfrac{1}{5})^{n+1}\\[/tex]
3)
A)
[tex]s_n=u_n+v_n\\s_0=1+2=3\\\\s_1=\dfrac{7}{5}+\dfrac{8}{5}=\dfrac{15}{5}=3\\\\s_2=\dfrac{37}{25}+\dfrac{38}{25}=\dfrac{75}{25}=3\\[/tex]
s serait constante
B)
[tex]s_n=u_n+v_n\\\\s_{n+1}=u_{n+1}+v_{n+1}=\dfrac{3}{5}*u_n+\dfrac{2}{5}*v_n+\dfrac{2}{5}*u_n+\dfrac{3}{5}*v_n=u_n+v_n=s_n\\[/tex]
4)
[tex]\left \{ \begin {array} {ccc}u_n+v_n&=&3\\v_n-u_n&=&\dfrac{1}{5^{n+1} } \\\end {array} \right.\\\\\left \{ \begin {array} {ccc}u_n&=&\dfrac{3}{2} -\dfrac{1}{2*5^{n+1}} \\\\v_n&=&\dfrac{3}{2} +\dfrac{1}{2*5^{n+1}} \\\end {array} \right.\\[/tex]
5)
A)
[tex]\displaystyle t_n=\sum_{i=0}^n u_i=\sum_{i=0}^n 3=3*(n+1)\\\\[/tex]
B)
[tex]w_n=\sum_{i=0}^n v_i=\frac{1}{2} *\sum_{i=0}^n (3+\dfrac{1}{5^{i+1}})\\=\dfrac{3}{2} (n+1)+\frac{1}{2} *\dfrac{\dfrac{1}{5^{n+2}}-1 }{-\dfrac{4}{5} }[/tex]
Je te laisse le simplification. (Vérifie mes calculs)
Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Laurentvidal.fr est toujours là pour fournir des réponses précises. Revenez nous voir pour les informations les plus récentes.