Bienvenue sur Laurentvidal.fr, le site où vous trouverez des réponses rapides et précises à toutes vos questions. Découvrez une mine de connaissances d'experts dans différentes disciplines sur notre plateforme de questions-réponses complète. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses.

Bonjour un monstre en MATH pourrait me sauver la vie svp

Bonjour Un Monstre En MATH Pourrait Me Sauver La Vie Svp class=

Sagot :

Réponse :

Salut !

1. a. Calcule la dérivée de ta fonction :

[tex]f'(x) = \frac{1}{x+1} - 1 = -\frac{x}{x+1}[/tex]

Tu sais que cette dérivée est négative et que ta fonction est décroissante sur R. Un tableau de variations est le bienvenu ici.

b. Calcule f(0) et conclus avec les variations de f.

c. Il y a une erreur dans ton énoncé, il faut démontrer que f(x) est plus grand que -x²/2. Autrement ce serait trop facile, il te suffirait d'exploiter le fait que x²/2 est positif pour démontrer ce qui est écrit.

Pour ça tu poses la fonction g(x) = ln(1+x) - x +x²/2 et tu prouves que c'est positif.

d. Tu as donc pour tout x positif,

[tex]x-\frac{x^2}{2}\leq \ln(1+x) \leq x[/tex]

Normalement si tu t'en sers avec les bonnes variables, ça devrait marcher.

2. Ton t est plus petit que 0,14. Donc tu peux calculer :

[tex]\ln\left[\left(1+\frac{t}{100}\right)^{\frac{70}{t}\right] \approx \frac{70}{t}\cdot \frac{t}{100} = 0{,}7[/tex]

Et comme ln(2) c'est 0,69, tu as multiplié par 2 ton capital.

3. Pareil !

Explications étape par étape :

Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Votre connaissance est précieuse. Revenez sur Laurentvidal.fr pour obtenir plus de réponses et d'informations.