Laurentvidal.fr est l'endroit idéal pour trouver des réponses rapides et précises à toutes vos questions. Rejoignez notre plateforme de questions-réponses pour obtenir des informations précises d'experts dans divers domaines. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses.

Bonjour, j’aurais besoin d’aide sur cet exo svp
3. a) Déterminer (s'ils existent) tous les nombres que l'on peut choisir au départ pour obtenir un résultat
égal à 0.
b) Déterminer (s'ils existent) tous les nombres que l'on peut choisir au départ pour obtenir un
résultat égal à 39.
c) Déterminer (s'ils existent) tous les nombres que l'on peut choisir au départ pour obtenir un
résultat égal à - 30.


Bonjour Jaurais Besoin Daide Sur Cet Exo Svp 3 A Déterminer Sils Existent Tous Les Nombres Que Lon Peut Choisir Au Départ Pour Obtenir Un Résultat Égal À 0 B Dé class=

Sagot :

Mozi

Bonsoir,

Programme de calcul:

choisir un nombre: soit x ce nombre

Le multiplier par 3: 3x

Elever le résultat au carré : (3x)² = 9x²

Retrancher 25 de ce carré: 9n² - 25

Notons R le résultat.

R = 9x² - 25

a) R = 0 ⇔ (3x)² = 25 = 5²

⇔ 3x = 5 ou 3x = -5

⇔ x = 5/3 ou x = -5/3

b) R = 39 ⇔ 9x² - 25 = 39

⇔ 9x² = 64

⇔  (3x)² = 8²

⇔ 3x = 8 ou 3x = -8

⇔ x = 8/3 ou x = -8/3

c) R = -30 ⇔ 9x² - 25 = -30

⇔ 9x² = -5

or 9x² ≥ 0 alors que -5<0

Il n'existe aucun nombre réel tel que 9x² - 25 = -30

Réponse :

Explications étape par étape :

Soit n le nombre choisi au départ et A l ‘expression littérale de ce programme.

A = (n x 3)^2 - 25 = 3n^2 - 5^2 = (3n + 5)(3n - 5)

3b) A= 3n^2 - 25 = 39 donc 3n^2 = 39 + 25  = 64 = (+/- 8)^2

donc 3n = 8 d’où n = 8/3 ou 3n = -8 d’où n = -8/3

>>>> A = 39 si n = 8/3 ou -8/3

3a) A= 3n^2 - 25 = O donc 3n^2 = 25 =  (+/- 5)^2

donc 3n = 5 d’où n = 5/3 ou 3n = -5 d’où n = -5/3

>>>> A = 0 si n = 5/3 ou -5/3

3c) A= 3n^2 - 25 = -30 donc 3n^2 = - 5

Le carré d’un nombre réel est peut être négatif

donc pour A = -30, n réel n’existe pas.