Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses. Explorez des solutions complètes à vos questions grâce à une large gamme de professionnels sur notre plateforme conviviale.

Bonjour quelqu'un pourrais maider sil vous plaît​

Bonjour Quelquun Pourrais Maider Sil Vous Plaît class=

Sagot :

Explications étape par étape :

A (3 ; 2 ) B (5 ; - 1 )  C ( ( -2 ; 3 )

1.     vectAB =   5 - 3       =    2

                        -1 - 2             -3

      vect AC = -5

                         1

      vect BC = -7

                        4

2.     vectAB.vectAC =  2 * -5  +  -3 * 1 = -13

       vectBA.vectBC = 14 + 12 = 26

       vectCB.vectCA = 35 + 4 = 39

3. AB = [tex]\sqrt{(5-3)^{2} +(-1-2)^{2} }[/tex] = [tex]\sqrt{4+9}[/tex] = [tex]\sqrt{13}[/tex]

   AC = [tex]\sqrt{(-2-3)^{2}+(3-2)^{2} }[/tex] =  [tex]\sqrt{26}[/tex]

   BC = [tex]\sqrt{65}[/tex]

4.  vectAB.vectAC = AB.ACcosBAC

⇔ cosBAC = ( vectAB.vectAC )  / AB.AC

⇔ cosBAC = -13 / (√13.√26 )

⇔ cosBAC ≅ -0,7071

⇔ BAC = 135°

    vectBA.vectBC = BA.BCcosCBA

⇔ cosCBA = ( vectBA.vectBC )  / BA.BC

⇔ cosCBA = 26 / (√13.√65 )

⇔ cosCBA ≅ 0,8944

⇔ CBA ≅ 26,57°

BCA = 180 - 135 - 26,57 = 18,43°

Vérification:

    vectCB.vectCA = CB.CAcosBCA

⇔ cosBCA = ( vectCB.vectCA )  / CB.CA

⇔ cosBCA = 39 / (√65.√26 )

⇔ cosBCA ≅  0,9487

⇔ BCA ≅ 18,43°