Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Explorez des solutions complètes à vos questions grâce à une large gamme de professionnels sur notre plateforme conviviale. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels.
Sagot :
Bonjour,
il manque des parenthèses dans ton énoncé, je suppose qu'il s'agit de :
[tex]f(x) = \frac{x^{2}-2 }{x+4}[/tex] Df : ] - 4 ; + ∞ [
rappel de cours :
[tex]f'(\frac{u}{v} ) = \frac{u'v-uv'}{v^2}[/tex] donc f'(x) est dérivable sur x + 4 ≠ 0 soit pour x ≠ - 4 d'où f'(x) est dérivable sur ] - 4 ; + ∞ [
On a u = x² - 2 u' = 2x
v = x + 4 v' = 1
d'où [tex]f'(x) = \frac{2x(x + 4) - 1(x^2 - 2)}{(x + 4)^2} = \frac{2x^2 + 8x - x^2 + 2}{(x + 4)^2} =\frac{x^2 + 8x + 2}{(x + 4)^2}[/tex]
Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Merci d'avoir visité Laurentvidal.fr. Revenez bientôt pour plus d'informations utiles et des réponses de nos experts.