Laurentvidal.fr vous aide à trouver des réponses à toutes vos questions grâce à une communauté d'experts passionnés. Trouvez des réponses rapides et fiables à vos questions grâce à l'aide d'experts expérimentés sur notre plateforme conviviale. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.

Svp es ce que je peux avoir de l’aide c’est du niveau 2nde

Svp Es Ce Que Je Peux Avoir De Laide Cest Du Niveau 2nde class=

Sagot :

USM15

BJR

1) dans le repère (P;I;N) les coordonnées de

M( 2;1)

N(0;1)

P(0;0)

Q(2;0)

I(1;0)

-----------------------------------------------------------

2) coordonnées de E et F

calculons d'abord les coordonnées des vecteurs MN et PN

  • vecteur MN (xN - xM ; yN - yM) → (0 - 2; 1 - 1)

donc vecteur MN( -2;0)

  • vecteur PN (xN - xP ; yN - yP) → (0  ; 1 - 0)

donc vecteur PN(0 ; 1)

  • coordonnées de E

on sait que vecteur QE = 3/4 MN  avec  vecteur MN(-2;0)

avec vecteur QE ( xE - xQ ; yE - yQ) → (xE - 2 ; yE - 0)

soit coordonnées du  vecteur QE (xE - 2 ; yE)

⇒ xE - 2 = 3/4 × - 2 ⇒ xE = 2 - 6/4 ⇒ xE = 2/4 = 1/2

yE = 3/4 × 0 ⇒ yE = 0

coordonnées de E( 1/2 ; 0)

  • coordonnées de F

on sait que 4vecteur PF = PN soit vecteur PF = PN/4 avec vecteur PN( 0;1)

avec vecteur PF(xF - xP ; yF - yP)

soit coordonnées du vecteur PF(xF - 0 ; yF - 0)

⇒ xF = 0

⇒ yF = 1/4

soit coordonnées de F(0 ; 1/4)

-----------------------------------------------------------------

3 ) coordonnées vecteur EF et QN

  • vecteur EF( xF - xE ; yF - yE ) → (0 - 1/2 ; 1/4 - 0)

coordonnées vecteur EF( -1/2 ; 1/4)

  • vecteur QN ( xN - xQ ; yN - yQ) → ( 0 - 2 ; 1 - 0 )

coordonnées vecteur QN( -2 : 1)

-----------------------------------------------------------------

4) (EF) // (QN) si leurs vecteurs sont colinéaires

soit si xy' - x'y = 0

⇒-1/2 x 1 - (-2) x 1/4

⇒ -1/2 + 1/2 = 0 ⇒ (EF) // (QN)

--------------------------------------------------------

5) G(6/11 ; 5/11) point d'intersection de (MF) et (NI) ?

  • équation de la droite (MF) telle que y = ax + b

déterminons la valeur de la pente (coefficient directeur)

avec M(2;1) et F(0;1/4)

a = (yF - yM)/( xF - xF)

a = ( 1/4 - 1) / (0 - 2)

a = -3/4 / -2

a = + 3/8

⇒ y = 3/8x + b

déterminons b avec le point M(2 ; 1)

⇒ 1 = 3/8 x 2 + b

⇒ b = 1 - 6/8

b = + 1/4

équation de MF ⇒ y = 3/8x + 1/4

  • équation de la droite NI avec N(0 ; 1) et I(1 ; 0)

valeur de la pente

a = (yI - yN)/(xI - xN)

a = (0 - 1 )/(1 - 0)

a = -1

⇒ y = - x + b

déterminons b avec le point N(0 ; 1)

⇒ 1 = - x × 0 + b

b = 1

équation de NI ⇒ y = -x + 1

si G est le point d'intersection de (MF) et (NI) alors ses coordonnées vérifient les 2 équations de droite

⇒ G(6/11 ; 5/ 11)

  • pour (MF)

y = 3/8x + 1/4

y = 3/8 × 6/11 + 1/4

y = 18/88 + 1/4

y = 5/11 pour x = 6/11

  • pour (NI)

y = - x + 1

y = - 6/11 + 1

y = 5/11 pour x = 6/11

le point G vérifie les équations de (MF) et (NI)

G(6/11 ; 5/11) est le point d'intersection de ces deux droites

voilà

bonne aprèm

Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Merci de visiter Laurentvidal.fr. Revenez souvent pour obtenir les réponses les plus récentes et des informations.