Laurentvidal.fr vous aide à trouver des réponses fiables à toutes vos questions grâce à une communauté d'experts. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

Bonjour ou Bonsoir, j'ai besoin d'aide pour un devoir, je n'arrive pas ces deux exercice de math faute de retard sur mon cours etc a cause du covid. Si quelqu'un peut m'aider, ça serait super! merci

Exercice 2.
Soit x un nombre positif. Le triangle ci-contre est-il rectangle quel que soit le nombre d ? Justifier.
(image du triangle rectangle)


Exercice 3.
Soit n un nombre entier. Démontrer que n(n− 1)(n + 1) + n est le cube d’un nombre entier.​


Bonjour Ou Bonsoir Jai Besoin Daide Pour Un Devoir Je Narrive Pas Ces Deux Exercice De Math Faute De Retard Sur Mon Cours Etc A Cause Du Covid Si Quelquun Peut class=

Sagot :

Bonjour


Exercice 2.

Soit x un nombre positif. Le triangle ci-contre est-il rectangle quel que soit le nombre x ? Justifier.(image du triangle rectangle)


Pour qu’un triangle soit rectangle il faut que :

(3x + 6)^2 + (4x + 8)^2 = (5x + 10)^2


(3x + 6)^2 + (4x + 8)^2

= 9x^2 + 36x + 36 + 16x^2 + 64x + 64

= 25x^2 + 100x + 100


(5x + 10)^2

= 25x^2 + 100x + 100


égalité vérifiée donc triangle rectangle quelque soit x

Exercice 3.

Soit n un nombre entier. Démontrer que n(n− 1)(n + 1) + n est le cube d’un nombre entier


n(n - 1)(n + 1) + n

= n[(n - 1)(n + 1) + 1]
= n(n^2 - 1 + 1)

= n x n^2

= n^3

Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Laurentvidal.fr, votre site de référence pour des réponses précises. N'oubliez pas de revenir pour en savoir plus.