Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète.

Bonjour j’aurais vraiment besoin d’aide pour ce dm de maths s’il vous plaît
Merci beaucoup


Bonjour Jaurais Vraiment Besoin Daide Pour Ce Dm De Maths Sil Vous Plaît Merci Beaucoup class=

Sagot :

Bonjour :)

[tex]\text{ABCD carr\'e de c\^ot\'e 2. On note I milieu de AB et K le projet\'e}\\\text{orthogonal de A sur DI};\\\\\text{Il existe deux d\'efinitions\ du\ produit\ scalaire :}\\\\1)\ \vec{u}.\vec{v}=||\vec{u}||\times||\vec{v}||\times\cos(\vec{u};\vec{v})\\\\2)\ \vec{u}.\vec{v}=\frac{1}{2}(||\vec{u}||^{2}+||\vec{v}||^{2}-||\vec{u}-\vec{v}||^{2})[/tex]

[tex]\text{On se place dans le rep\`ere }(A,\vec{i},\vec{j}).\\\text{Ce qui permet de d\'eduire\ les\ coordonn\'ees de chaque point :}\\A(0,0),B(0,2),C(2,2),D(2,0)\ et\ I(0,1)[/tex]

[tex]\overrightarrow{DA}=\left( \begin{array}{c}-2 \\0 \\\end{array} \right)\ et\ \overrightarrow{DI}=\left( \begin{array}{c}-2 \\1 \\\end{array} \right)[/tex]

[tex]||\overrightarrow{DA}||=2\\||\overrightarrow{DI}||=\sqrt{(-2)^{2}+1^{2}}=\sqrt{5}[/tex]

[tex]\overrightarrow{DA}.\overrightarrow{DI}=\frac{1}{2}(||\overrightarrow{DA}||^{2}+||\overrightarrow{DI}||^{2}-||\overrightarrow{DA}-\overrightarrow{DI}||^{2})\\=\frac{1}{2}(2^{2}+(\sqrt{5})^{2}-1^{2})\\=4[/tex]

[tex]\text{Utilisons l'autre d\'efinition du produit scalaire qui fait intervenir}\\\text{le cosinus de l'angle orient\'e \'etudi\'e :}\\\overrightarrow{DA}.\overrightarrow{DI}=||\overrightarrow{DA}||\times||\overrightarrow{DI}||\times\cos(\overrightarrow{DA};\overrightarrow{DI})[/tex]

[tex]\cos(\overrightarrow{DA};\overrightarrow{DI})=\frac{\overrightarrow{DA}.\overrightarrow{DI}}{||\overrightarrow{DA}||\times||\overrightarrow{DI}||}=\frac{4}{2\times\sqrt{5}}=\frac{2}{\sqrt{5}}[/tex]

[tex]\text{On sait que AKD est rectangle en K. D'apr\`es les relations}\\\text{trigonom\'etriques, on a :}\\\cos(\widehat{KDA})=\cos(\overrightarrow{DA};\overrightarrow{DI})=\frac{DK}{DA}\\\\\text{La valeur exacte de [DK] est donn\'ee par :}\\DK=AD\times\cos(\overrightarrow{DA};\overrightarrow{DI})=\frac{4}{\sqrt{5}}[/tex]

N'hésite pas à me poser des questions si besoin! ;)

Bonne continuation à toi ! :D

View image Micka44
Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Merci d'utiliser Laurentvidal.fr. Revenez pour obtenir plus de connaissances de nos experts.