Découvrez les solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R la plus fiable et rapide. Rejoignez notre plateforme de questions-réponses et connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions. Découvrez des solutions fiables à vos questions grâce à un vaste réseau d'experts sur notre plateforme de questions-réponses complète.

Bonjour j’aurais vraiment besoin d’aide pour ce petit exercice de maths s’il vous plaît
Merci à vous
Voici l’énoncé :

Le plan est muni d'un repère orthonormé. On considère les points A(1;4), B(-3;-2)
et C(2;-5).
Déterminer une mesure des angles du triangle ABC à 0,1 degré près.

Encore merci

Sagot :

Bonsoir :)

[tex]\overrightarrow{AB}\left( \begin{array}{c}x_B-x_A \\y_B-y_A \\\end{array} \right)=\overrightarrow{AB}\left( \begin{array}{c}-4 \\-6 \\\end{array} \right)\\\\\overrightarrow{AC}\left( \begin{array}{c}x_C-x_A \\y_C-y_A \\\end{array} \right)=\overrightarrow{AC}\left( \begin{array}{c}1 \\-9 \\\end{array} \right)\\\\\overrightarrow{BC}\left( \begin{array}{c}x_C-x_B \\y_C-y_B \\\end{array} \right)=\overrightarrow{BC}\left( \begin{array}{c}5 \\-3 \\\end{array} \right)[/tex]

[tex]\text{La norme d'un vecteur }\vec{u}(x,y)\text{ est : }||\vec{u}||=\sqrt{x^{2}+y^{2}[/tex]

[tex]||\overrightarrow{AB}||=\sqrt{(-4)^{2}+(-6)^{2}}=\sqrt{52}=2\sqrt{13}\\\\||\overrightarrow{AC}||=\sqrt{(1)^{2}+(-9)^{2}}=\sqrt{82}\\\\||\overrightarrow{BC}||=\sqrt{(5)^{2}+(-3)^{2}}=\sqrt{34}[/tex]

[tex]\overrightarrow{AB}.\overrightarrow{AC}=\frac{1}{2}(||\overrightarrow{AB}||^{2}+||\overrightarrow{AC}||^{2}-||\overrightarrow{AB-AC}||^{2})\\\\\overrightarrow{AB}.\overrightarrow{AC}=\frac{1}{2}(4\times 13+82-34)=50\\\\\text{On va utiliser la deuxi\`eme d\'efinition du produit scalaire qui}\\\text{fait intervenir le cosinus de l'angle orient\'e }(\overrightarrow{AB};\overrightarrow{AC})[/tex]

[tex]\overrightarrow{AB}.\overrightarrow{AC}=||\overrightarrow{AB}||\times||\overrightarrow{AC}||\times\cos(\overrightarrow{AB},\overrightoarrw{AC})[/tex]

[tex]\cos(\overrightarrow{AB},\overrightarrow{AC})=\frac{50}{2\sqrt{13}\times\sqrt{82}}\\\\\widehat{BAC}=\cos^{-1}(\frac{50}{2\sqrt{13}\times\sqrt{82}})\approx 40\°[/tex]

[tex]\text{On recommence la m\^eme proc\'edure de calcul avec un autre}\\\text{angle orient\'e, par exemple }(\overrightarrow{AB};\overrightarrow{BC}):\\\overrightarrow{AB}.\overrightarrow{BC}=\frac{1}{2}(||\overrightarrow{AB}||^{2}+||\overrightarrow{BC}||^{2}-||\overrightarrow{AB}-\overrightarrow{BC}||^{2})\\\\\overrightarrow{AB}.\overrightarrow{BC}=2[/tex]

[tex]\cos(\overrightarrow{AB};\overrightarrow{BC})=\frac{2}{2\sqrt{13}\times\sqrt{34}}\\\\\widehat{ABC}=\cos^{-1}(\frac{2}{2\sqrt{13}\times\sqrt{34}})\approx 87,3\°[/tex]

[tex]\text{La somme des angles dans un triangle quelconque est \'egal \`a }180\°\\\\\widehat{BCA}=180-\widehat{BAC}-\widehat{ABC}=180-40-87,3\\\widehat{BCA}=52,7\°[/tex]

N'hésite pas pour des questions si besoin :)

Bonne continuation à toi ! :)

View image Micka44
Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et des informations de nos experts.