Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines. Découvrez des réponses détaillées à vos questions grâce à un vaste réseau de professionnels sur notre plateforme de questions-réponses complète.

bonjour pouvez vous m'aider svp

recherche déterminer les variations de la fonction racine carrée, notée R, sur son ensemble de définition.

1) rappeler l'ensemble de définition de la fonction R
2) on considère deux réels a et b tel que:
[tex]o \leqslant a < b[/tex]
on cherche à comparer R(a) et R(b)

a) démontrer que:
[tex]r(b) - r(a) = \frac{b - a }{ \sqrt{b} + \sqrt{a} } [/tex]
b) étudier alors le signe de cette différence

c) en déduire une comparaison entre :
[tex] \sqrt{a} \: et \: \sqrt{b} [/tex]
et conclure

Merci de m'aider au plus vite svp


Sagot :

Réponse :

Bonjour

Explications étape par étape :

1)

La fct racine  carrée est définie sur [0;+∞[

2)

a)

Soient :

0 ≤ a < b

r(b)=√b  et r(a)=√a

Donc :

r(b)-r(a)=√b-√a

On va multiplier le membre de droite par :

(√b+√a) / (√b+√a) qui vaut 1 donc ne change pas la valeur du membre de droite.

r(b)-r(a)=(√b-√a)[(√b+√a) / (√b+√a)]

Mais au numérateur on a une identité remarquable :

(√b-√a)(√b+√a) =(√b)²-(√a)²=b-a

Donc :

r(b)-r(a)=(b-a) / (√b+√a)

b)

Le dénominateur (√b+√a) est positif donc :

r(b)-r(a) est du signe de (b-a).

Comme a < b , alors (b-a) > 0.

Donc :

r(b)-r(a) > 0.

c)

Donc :

√b > √a.

Sur [0;+∞[ , on est parti de b > a pour arriver à √b > √a, ce qui prouve que la fct racine carrée est croissante sur son intervalle de définition.

Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et les informations de nos experts.