Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise.
Sagot :
Réponse :
Calculer en fonction de a les produits scalaires suivants :
1) vec(AB).vec(AC)
ici on utilise la projection orthogonale du vecteur AC sur la droite (AB)
donc vec(AB).vec(AC) = vec(AB).vec(AB) = AB² = (3a)² = 9a²
2) vec(AB).vec(AF)
le triangle ABF est équilatéral donc (FH) est la médiatrice du segment (AB) donc le projeté orthogonal du vecteur AF sur la droite (AB) est le vecteur AH donc on peut écrire que :
vec(AB).vec(AF) = vec(AB).vec(AH)
or les vecteurs AB et AH sont colinéaires de même sens
donc vec(AB).vec(AH) = AB x AH = 3 a x a = 3a²
donc vec(AB).vec(AF) = 3a²
3) vec(BC).vec(AF) = vec(BC).(vec(AB) + vec(BF))
= vec(BC).vec(AB) + vec(BC).vec(BF)
or vec(BF) = vec(BH) est le projeté orthogonale sur la droite (AB)
donc vec(BC).vec(AF) = 0
4) vec(BF).vec(AD) = vec(BA)+vec(AF)).vec(AD)
= vec(BA).vec(AD) + vec(AF).vec(AD)
les vecteurs BA et AD sont orthogonaux donc vec(BA).vec(AD) = 0
vec(AF).vec(AD) = vec(AH) x vec(AD) = 0
donc vec(BF).vec(AD) = 0
5) vec(HA).vec(BE) = - vec(AH).vec(BE) = - vec(HB).vec(BE) = -vec(HB).vec(BC) car vec(BE) est le projeté orthogonale sur la droite (BC)
donc vec(HA).vec(BE) = 0
Explications étape par étape :
Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Visitez toujours Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.