Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la meilleure plateforme de Q&R. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète.
Sagot :
Réponse :
Calculer en fonction de a les produits scalaires suivants :
1) vec(AB).vec(AC)
ici on utilise la projection orthogonale du vecteur AC sur la droite (AB)
donc vec(AB).vec(AC) = vec(AB).vec(AB) = AB² = (3a)² = 9a²
2) vec(AB).vec(AF)
le triangle ABF est équilatéral donc (FH) est la médiatrice du segment (AB) donc le projeté orthogonal du vecteur AF sur la droite (AB) est le vecteur AH donc on peut écrire que :
vec(AB).vec(AF) = vec(AB).vec(AH)
or les vecteurs AB et AH sont colinéaires de même sens
donc vec(AB).vec(AH) = AB x AH = 3 a x a = 3a²
donc vec(AB).vec(AF) = 3a²
3) vec(BC).vec(AF) = vec(BC).(vec(AB) + vec(BF))
= vec(BC).vec(AB) + vec(BC).vec(BF)
or vec(BF) = vec(BH) est le projeté orthogonale sur la droite (AB)
donc vec(BC).vec(AF) = 0
4) vec(BF).vec(AD) = vec(BA)+vec(AF)).vec(AD)
= vec(BA).vec(AD) + vec(AF).vec(AD)
les vecteurs BA et AD sont orthogonaux donc vec(BA).vec(AD) = 0
vec(AF).vec(AD) = vec(AH) x vec(AD) = 0
donc vec(BF).vec(AD) = 0
5) vec(HA).vec(BE) = - vec(AH).vec(BE) = - vec(HB).vec(BE) = -vec(HB).vec(BC) car vec(BE) est le projeté orthogonale sur la droite (BC)
donc vec(HA).vec(BE) = 0
Explications étape par étape :
Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Merci d'utiliser Laurentvidal.fr. Continuez à nous rendre visite pour trouver des réponses à vos questions.