Laurentvidal.fr est l'endroit idéal pour trouver des réponses rapides et précises à toutes vos questions. Notre plateforme vous connecte à des professionnels prêts à fournir des réponses précises à toutes vos questions. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.

Bonsoir

Pouvez vous m’aider svp pour cet exo.
Merci beaucoup

Bonsoir Pouvez Vous Maider Svp Pour Cet Exo Merci Beaucoup class=

Sagot :

Bonjour Elo :)

  • Question a)

[tex](E):y'=x^{3}+2x^{2}+x+2\ sur\ \mathbb R\\\\\text{Rappel : }\\(x^{n})'=nx^{n-1}\\\text{Si on a une fonction }f(x)=x^{n}\text{, alors sa primitive est }F(x)=\frac{1}{n+1}x^{n+1}[/tex]

[tex](\frac{1}{4}x^{4})'=x^{3}\ \ (\frac{2}{3}x^{3})'=2x^{2}\ \ (\frac{1}{2}x^{2})'=x\ \ (2x)'=2\ \ et\ (1)'=0[/tex]

[tex]Donc,f(x)\ est\ solution\ de\ (E)[/tex]

  • Question b)

[tex](x^{2}+1)(x+2)=x^{2}\times x+x^{2}\times 2+1\times x+1\times 2\\\Rightarrow x^{3}+2x^{2}+x+2[/tex]

  • Question c)

[tex]\text{La fonction }f\text{ semble \^etre d\'ecroissante pour }x\in]-\infty;-2]\\\text{La fonction }f\text{ semble \^etre croissante pour }x\in[-2;+\infty[[/tex]

  • Question d)

[tex]f'(x)=(x^{2}+1)(x+2)\\f'(x)=0\text{ quand :}\\\\x+2=0\ \ \Leftrightarrow\ \ x=-2\\x^{2}+1>0\\f'(x)\text{ d\'epend du signe de }x+2\\\textbf{Voir ci joint tableau de signe et variation}[/tex]

N'hésite pas pour les questions si besoin

Bonne soirée ! :)

View image Micka44