Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Notre plateforme vous connecte à des professionnels prêts à fournir des réponses précises à toutes vos questions. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés.

Bonjour pouvez vous m’aider svp ?


Bonjour Pouvez Vous Maider Svp class=

Sagot :

Réponse :

75) f est définie sur R  par,  f(x) = x² - 8 x + 3

1) montrer que f(x) = (x - 4)² - 13

f(x) = x² - 8 x + 3

     = x² - 8 x + 3 + 16 - 16

     = x² - 8 x + 16 - 13     identité remarquable a² - 2ab + b² = (a - b)²

  A(x) = (x - 4)² - 13

2) calculer f(5) et f(1)

f(5) = (5 - 4)² - 13 = - 12

f(1) = (1 - 4)² - 13 = (-3)² - 13 = 9 - 13 = - 4

3) montrer que f(x) ≥ - 13  

 pour tout réel x; on a   (x - 4)² ≥ 0  ⇔ (x - 4)² - 13 ≥ - 13  ⇔ f(x) ≥ - 13

4) en déduire que f admet un minimum sur R et préciser sa valeur

     f(x) ≥ - 13  ⇒ donc f admet un minimum sur R et sa valeur est - 13

5) pour quelle (s) valeur (s) de x est-il atteint ?

   Ce minimum est atteint pour  x = 4

76)  soit f définie sur R par f(x) = - x² + 6 x - 5

1) montrer que f(x) = - (x - 3)² + 4 pour tout réel x

f(x) = - x² + 6 x - 5

      = -(x² - 6 x + 5)

      = - (x² - 6 x + 5 + 9 - 9)

      = - (x² - 6 x + 9 - 4)

      = - ((x - 3)² - 4

 f(x) = - (x - 3)² + 4

2) montrer que f(x) ≤ 4  pour x ∈ R

pour x ∈ R  on a (x - 3)² ≥ 0  ⇔ - (x - 3)² ≤ 0  ⇔ - (x - 3)² + 4 ≤ 4

⇔ f(x) ≤ 4  pour  x ∈ R

3) en déduire que f admet un maximum sur R

préciser le nombre x pour lequel il est atteint

on a  f(x) ≤ 4  ⇔  f admet un maximum sur R  qui est 4  et il est atteint pour x = 3

Explications étape par étape :

Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Nous sommes ravis de répondre à vos questions sur Laurentvidal.fr. N'oubliez pas de revenir pour en savoir plus.