Answered

Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Rejoignez notre plateforme de questions-réponses pour vous connecter avec des experts dédiés à fournir des réponses précises à vos questions dans divers domaines. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace.

bonjour je suis en ssi  et j'aurais besoins d'aide svp  pour cet exo sur les dérivées c'est assez urgent !!!   une entreprise fabrique des casseroles de contenance 5L en utilisant le moins de métal possible x désigne le rayon du disque intérieur et H la hauteur de la casserole en centimetre
a) exprimer h en fonction de x.
b) on note S(x) la somme de l'aire latérale et de l'aire du disque intérieur en cm². démontrer que S(x)= pi x² + 10000/x
c) étudier les variations de la fonction S ]0; + infini[
d) déterminer une valeur approchée de x au mm prés pour laquelle la quantité de métale utilisée est minimal.


Sagot :

je suppose que c'est une casserole cylindrique.

 

a) volume = pix².h = 5000cm³ => h = 5000/pix²

b) aire latérale = 2pirh = 2pi.x.5000/pix² = 10000/x

    aire totale (sans couvercle) = pix² +10000/x

c) dérivée : 2pi.x - 10000/x² = (2pix³ -10000)/x²   racine = racine cubique (5000/pi) = 11,675

      x   0                              11,6                          infini

  f'(x)                      -               0                +

  f(x)                      \                                  /

le métal utilisé sera minimal pour un rayon de 11,6 cm