Answered

Trouvez des réponses facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Notre plateforme de questions-réponses vous connecte avec des experts prêts à fournir des informations précises dans divers domaines de connaissance. Connectez-vous avec une communauté d'experts prêts à fournir des solutions précises à vos questions de manière rapide et efficace sur notre plateforme conviviale de questions-réponses.

bonjour je suis en ssi  et j'aurais besoins d'aide svp  pour cet exo sur les dérivées c'est assez urgent !!!   une entreprise fabrique des casseroles de contenance 5L en utilisant le moins de métal possible x désigne le rayon du disque intérieur et H la hauteur de la casserole en centimetre
a) exprimer h en fonction de x.
b) on note S(x) la somme de l'aire latérale et de l'aire du disque intérieur en cm². démontrer que S(x)= pi x² + 10000/x
c) étudier les variations de la fonction S ]0; + infini[
d) déterminer une valeur approchée de x au mm prés pour laquelle la quantité de métale utilisée est minimal.


Sagot :

je suppose que c'est une casserole cylindrique.

 

a) volume = pix².h = 5000cm³ => h = 5000/pix²

b) aire latérale = 2pirh = 2pi.x.5000/pix² = 10000/x

    aire totale (sans couvercle) = pix² +10000/x

c) dérivée : 2pi.x - 10000/x² = (2pix³ -10000)/x²   racine = racine cubique (5000/pi) = 11,675

      x   0                              11,6                          infini

  f'(x)                      -               0                +

  f(x)                      \                                  /

le métal utilisé sera minimal pour un rayon de 11,6 cm

 

Merci de votre passage. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. À bientôt. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Visitez toujours Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.