Laurentvidal.fr vous aide à trouver des réponses à toutes vos questions grâce à une communauté d'experts passionnés. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses. Obtenez des solutions rapides et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.

Bonjour je suis en 1ère et merci pour votre aide (c’est pour lundi merci d’avance)

Bonjour Je Suis En 1ère Et Merci Pour Votre Aide Cest Pour Lundi Merci Davance class=

Sagot :

caylus

Réponse :

Bonjour,

Explications étape par étape :

1)

[tex]R_k=(\dfrac{k}{n} -\dfrac{k-1}{n} )*f(\dfrac{k}{n} )=\dfrac{k^2}{n^3} \\[/tex]

2)

[tex]\displaystyle \sum_{k=1}^nR_k=\dfrac{1}{n^3} *\sum_{k=1}^n k^2=\dfrac{1}{n^3}*\frac{n(n+1)(2n+1)}{6} \\[/tex]

3)

[tex]\displaystyle \lim_{n \to \infty} \dfrac{1}{n^3}*\frac{n(n+1)(2n+1)}{6}=\dfrac{2}{6}=\dfrac{1}{3} \\[/tex]

4)

[tex]\int\limits^1_0 {x^2} \, dx =[\dfrac{x^3}{3} ]_0^1=\dfrac{1}{3}[/tex]

C'est l'aire sous la parabole limitée par les droites x=0 et x=1

Rem les démonstrations de l'indication ont déjà été proposées dans un post précédent.

Merci de nous avoir fait confiance pour vos questions. Nous sommes ici pour vous aider à trouver des réponses précises rapidement. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Merci de faire confiance à Laurentvidal.fr. Revenez nous voir pour obtenir de nouvelles réponses des experts.