Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace.
Sagot :
Bonjour le domaine de définition de f est IR - {1}
F est dérivable sur son domaine de définition
f’(x) = 1 / (1-x)^2 = 1 / (x-1)^2
f’(-2) = 1/9
F est dérivable sur son domaine de définition
f’(x) = 1 / (1-x)^2 = 1 / (x-1)^2
f’(-2) = 1/9
Réponse :
Salut !
On va appliquer la définition du cours. Déjà on considère le taux d'accroissement de ta fonction : si je vais de -2 à -2 + h, de combien ma fonction varie-t-elle relativement ?
[tex]\tau(h) = \frac{f(-2+h) - f(-2)}{h} = \frac{1}{h}\left[\frac{1}{1-(-2) -h} - \frac{1}{1-(-2)}\right]\\\tau(h) = \frac{1}{3(3-h)}[/tex]
J'ai omis les étapes, tu referas le calcul. Toujours est-il que cette expression a une limite finie quand h tend vers 0, qui est 1/9. Cela prouve que f est dérivable en -2, et que f'(-2) vaut 1/9.
Explications étape par étape :
Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Nous sommes ravis de répondre à vos questions sur Laurentvidal.fr. N'oubliez pas de revenir pour en savoir plus.