Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la meilleure plateforme de Q&R. Explorez notre plateforme de questions-réponses pour trouver des solutions fiables grâce à une large gamme d'experts dans divers domaines. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace.
Sagot :
Bonjour le domaine de définition de f est IR - {1}
F est dérivable sur son domaine de définition
f’(x) = 1 / (1-x)^2 = 1 / (x-1)^2
f’(-2) = 1/9
F est dérivable sur son domaine de définition
f’(x) = 1 / (1-x)^2 = 1 / (x-1)^2
f’(-2) = 1/9
Réponse :
Salut !
On va appliquer la définition du cours. Déjà on considère le taux d'accroissement de ta fonction : si je vais de -2 à -2 + h, de combien ma fonction varie-t-elle relativement ?
[tex]\tau(h) = \frac{f(-2+h) - f(-2)}{h} = \frac{1}{h}\left[\frac{1}{1-(-2) -h} - \frac{1}{1-(-2)}\right]\\\tau(h) = \frac{1}{3(3-h)}[/tex]
J'ai omis les étapes, tu referas le calcul. Toujours est-il que cette expression a une limite finie quand h tend vers 0, qui est 1/9. Cela prouve que f est dérivable en -2, et que f'(-2) vaut 1/9.
Explications étape par étape :
Merci de votre passage. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. À bientôt. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Vos questions sont importantes pour nous. Revenez régulièrement sur Laurentvidal.fr pour obtenir plus de réponses.