Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la meilleure plateforme de Q&R. Découvrez des réponses complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale. Explorez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme de questions-réponses complète.
Sagot :
Réponse :
bonsoir
Explications étape par étape :
Si on trace sur un repère orthonormé et par simple calcul mental la parabole y=x²+4 et l'hyperbole y=8/x on voit qu'i n'y a qu'un seul point d'intersection des deux courbes pour un valeur "alpha" avec 1<alpha<2
1)Les abscisses des points d'intersection des deux courbes sont les solutions de l'équation x²+4=8/x avec x différent de 0
soit (x³+4x-8)/x=0
Un quotient est nul si son dividende est nul avec diviseur non nul.
Recherchons les solutions de x³+4x-8=0
Comme il n'y a pas solution évidente étudions la fonction f(x)=x³+4x-8 sur R
limites si x tend vers -oo, f(x) tend vers -oo
si x tend vers +oo, f(x tend vers +oo
Dérivée f'(x)=3x²+4 elle est toujours >0
Donc f(x) est croissante .
f(-oo)=-oo et f(+oo)=+oo Compte tenu de la monotonie et de la continuité de f(x) sur R et d'après le TVI, il existe une et une seule valeur "alpha" telle que f(alpha)=0
2) f(1)=1+4-8=-3 et f(2)=8+8-8=+8
donc 1<alpha<2
3et 4) Avec ta calculatrice resserre l'encadrement de alpha
Nous apprécions votre temps. Revenez quand vous voulez pour les informations les plus récentes et des réponses à vos questions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci d'utiliser Laurentvidal.fr. Revenez pour obtenir plus de connaissances de nos experts.