Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la meilleure plateforme de Q&R. Découvrez des réponses fiables à vos questions grâce à une communauté d'experts prêts à partager leurs connaissances et expériences variées. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.

Bonjour j'aurais vraiment besoin d'aide s'il vous plaît pour cette exercice alors si quelqu'un aurait l'amabilité de m'aider ce serait vraiment sympa parce que j'y comprend absolument rien et c'est à rendre pour demain (╥﹏╥)

On a tracé sur le graphique ci-dessous la courbe représentative Cf, d'une fonction f définie sur [0; 25] par :
f(x) = (ax + b)e-⁰,²
où a et b sont deux nombres réels.

1. Résoudre graphiquement l'équation f(x) = 6.
2. a Déterminer, par un calcul le coefficient directeur de la droite T.
b. Exprimer, pour tout x € [0; 25]. f'(x) en fonction de a et b.
C. Montrer que a et b sont solutions du système. { a - 0,2b = 3,6 { b = 7 En déduire la valeur de a.

Partie B
1. Etudier les variations de la fonction définie sur [0; 25] par f(x) = (5x + 7)e-⁰,²
Justifier.
2. Montrer que l'équation f(x) = 6 adunet une unique solution alpha sur l'intervalle [0; 25].
3. Donner une valeur approchée au dixiéme de alpha en utilisant la méthode du balayage.​

Bonjour Jaurais Vraiment Besoin Daide Sil Vous Plaît Pour Cette Exercice Alors Si Quelquun Aurait Lamabilité De Maider Ce Serait Vraiment Sympa Parce Que Jy Com class=

Sagot :

Réponse :

Bonjour

Explications étape par étape :

Partie A

1) f(x)=6 pour x=12

2a) (T) passe par les points A(0;7) et B(2;14,2)

son équation est donc y=3,6x+7

2b) f'(x)=a*(e^-0,2x)-0,2(ax+b)*(e^-0,2x)

f'(x)=(a-0,2ax-0,2b)(e^-0,2x)

On note que

f(0)=7   donc           b=7  équation (1)

f'(0)=3,6  donc     a-0,2b=3,6  équation(2) d'où a=3,6+1,4=5

    équation de f(x)=(5x+7)e^-0,2x

Partie B

1)Etude de f(x)

valeurs aux bornes du Df

f(0)=7  f(25)=....................(calculette)

Dérivée

f'(x)=5*(e^-0,2x)-0,2(5x+7)e^-0,2x

f'(x)=(e^-0,2x)(5-x-1,4)=(3,6-x)(e^-0,2x)

f'(x) est du signe de (3,6-x)    f'(x)=0 pour x=3,6

Tableau de signes de f'(x) et de variations de f(x)

x   0                              3,6                                  25

f'(x)              +                  0              -

f(x)  7      croît                 f(3,6)    décroît               f(25)

calcule f(3,6)=.......    

2)   f(0) est >6 et f(3,6) est > 6       Compte tenu de la  continuité est de la monotonie de f(x) sur [0; 3,6[ ,  f(x)=6 n'a pas de solution sur cet intervalle.

Par contre f(3,6)>6 et f(25) <6 la fonction étant continue et monotone sur ]3,6 ;25]   d'après le TVI, f(x)=6 admet une et une seule solution "alpha" telle que f(alpha)=6

"alpha" est au voisinage 12 (lecture graphique  partie A)

f(12)=(67)e^-2,4=6,08 f(11,9)=5,97

vois avec ta calculatrice pour être plus précis.

Merci de nous avoir fait confiance pour vos questions. Nous sommes ici pour vous aider à trouver des réponses précises rapidement. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Laurentvidal.fr, votre site de confiance pour des réponses. N'oubliez pas de revenir pour plus d'informations.