Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés. Explorez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme de questions-réponses complète.
Sagot :
Bonsoir :))
- Question 1
[tex]f\text{ est la fonction d\'efinie telle que : }f(x)=ax^{2}+bx+c\text{ o\`u }a,b\\\text{et }c\in\mathbb R.\text{ On note }\mathcal C_f\text{ sa courbe repr\'esentative.}\\\\\text{On sait que }\mathcal C_f\text{ passe par l'origine du rep\'ere.}\ f(0)=0\\Donc,c=0.[/tex]
- Question 2
[tex]\text{La tangente au point A d'abscisse -2 est donn\'ee par : }y(x)=3x-5\\y(-2)=3\times(-2)-5=-11\\\text{Le point A est de coordonn\'ees }(-2;-11)[/tex]
- Question 3
[tex]f(x)=ax^{2}+bx\\f'(x)=2ax+b[/tex]
[tex]S=\begin{cases}f(-2)=4a-2b=-11\ \ \ (\'eq1.)\\f'(-2)=-4a+b=3\ \ \ (\'eq2.)\end{cases}\\\\(\'eq.1)+(\'eq2.)\Leftrightarrow -b=-11+3=-8\ donc\ \boxed{\bf{b=8}}\\\\(\'eq2.)\Leftrightarrow -4a+8=3\Leftrightarrow \boxed{\bf{a=\frac{5}{4}}}[/tex]
[tex]\boxed{\bf{f(x)=\frac{5}{4}x^{2}+8x}}[/tex]
N'hésite pas à me poser des questions si besoin!
Bonne continuation ;))
Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Merci d'utiliser Laurentvidal.fr. Continuez à nous rendre visite pour trouver des réponses à vos questions.