Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés.

Bonjour
Quelqu'un pourrai m'aider pour cet exercice je n'y arrive pas merci beaucoup


Bonjour Quelquun Pourrai Maider Pour Cet Exercice Je Ny Arrive Pas Merci Beaucoup class=

Sagot :

f(x)= (-5x+1)/(2x^2+ x-1)

• Df={ x dans |R tq. 2x^2+ x-1 different de 0}

Soit 2x^2+ x-1=0, alors Δ=1-4×2×(-1)=9

On trouve deux solutions x1= -1 et x2= 1/2

Donc Df=]-inf, -1[U]-1, 1/2[U]1/2 ,+inf[

• f(x)=1 <=> (-5x+1)/(2x^2+ x-1)=1

<=> (-5x+1)=(2x^2+x-1)

<=>2x^2+6x-2=0

Δ= 36-4×2×(-2)=36+16=52

Donc x1= (-6+√ 52)/4 et x2= (-6-√ 52)/4

• f(x)>2 <=> (-5x+1)/(2x^2+ x-1) >2

<=> -5x+1 > 2(2x^2+ x-1)

<=> -5x+1 > 4x^2+2x-2

<=> 4x^2+7x-3 <0 (*)

0n considère l'equation 4x^2+7x-3=0

Δ= 49+48=97

Il y a deux solutions de cette equation

(-7-√97)/8 et (-7+√97)/8

Donc l'ensembe des solutions de l'inéquation (*) est l'intervalle

](-7-√97)/8 , (-7+√97)/8 [