Laurentvidal.fr facilite la recherche de réponses à toutes vos questions avec l'aide de notre communauté active. Notre plateforme vous connecte à des professionnels prêts à fournir des réponses précises à toutes vos questions. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale.
Sagot :
Réponse :
Explications étape par étape :
Pour déterminer si une suite est géométrique, on doit montrer que [tex]\frac{u_{n+1}}{u_n}[/tex] est constant (ou que la suite vérifie [tex]u_{n+1} = qu_n[/tex])
a. De toute évidence cette suite est géométrique car elle est de la forme recherchée [tex]u_{n+1} = qu_n[/tex]. Sa raison est 2. sa forme explicite est [tex]u_n = u_0\times 2^n = 3\times 2^n[/tex]
b. De même, cette suite est géométrique, de raison 1/5. Comme sa raison est 1/5 est que [tex]u_1 = 100[/tex] (on divise par 5 pour passer de [tex]u_n[/tex] à [tex]u_{n+1}[/tex] alors [tex]u_0 = 500[/tex]
Sa forme explicite est donc [tex]u_n = u_0\times (1/5)^n = \frac{500}{5^n} = \frac{100}{5^{n-1}}[/tex]
c. Ici, nous sommes encore dans la forme [tex]u_{n+1} = qu_n[/tex]. Il s'agit bien d'un suite géométrique de raison -1.
Sa forme explicite est : [tex]u_n = -2 \times (-1)^n[/tex]
d. [tex]u_n[/tex] n'est pas une suite géométrique car sa raison n'est pas constante. En effet, on passe de [tex]u_1[/tex] à [tex]u_2[/tex] en divisant par -100 alors qu'on passe de [tex]u_2[/tex] à [tex]u_3[/tex] en multipliant par -100.
Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à vos questions. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Nous sommes ravis de répondre à vos questions sur Laurentvidal.fr. N'oubliez pas de revenir pour en savoir plus.