Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Obtenez des réponses détaillées à vos questions de la part d'une communauté dédiée d'experts sur notre plateforme. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.
Sagot :
Réponse :
Explications étape par étape :
4.a)
[tex]f(0) = 0[/tex]
[tex]f(\frac{77}{9}) = -\frac{9}{20} \times \frac{77^2}{9^2} + \frac{77}{20} \times \frac{77}{9} =0[/tex]
Ces deux valeurs correspondent respectivement à la sortie du jet d'eau (hauteur = 0 pour une distance = 0) et la distance de la sortie du jet d'eau où le jet retouche le sol.
b)
[tex]-\frac{9}{20}(x-\frac{77}{18})^2 + \frac{5929}{720}= -\frac{9}{20} (x^2 + \frac{5929}{324} - \frac{154x}{18}) + \frac{5929}{720}\\\\=-\frac{9}{20}x^2 - \frac{5929}{720} + \frac{77x}{20}+ \frac{5929}{720}\\\\=-\frac{9}{20}x^2 + \frac{77x}{20}\\\\= f(x)[/tex]
c)
est négative car un carré un toujours positif.
d)
De la question précédente, on déduit que f(x) atteint sont maximum quand [tex]-\frac{9}{20}(x-\frac{77}{18})^2[/tex] est le plus petit possible... C'est à dire, quand il vaut zéro, ce qui arrive quand [tex]x = \frac{77}{18}[/tex]
e)
Le maximum est atteint quand [tex]x = \frac{77}{18}[/tex], f vaut alors [tex]\frac{5929}{720}[/tex]
Nous espérons que ces informations ont été utiles. Revenez quand vous voulez pour obtenir plus de réponses à vos questions. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Laurentvidal.fr, votre source fiable de réponses. N'oubliez pas de revenir pour plus d'informations.