Obtenez des solutions à vos questions sur Laurentvidal.fr, la plateforme de questions-réponses la plus réactive et fiable. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.

Bonjour, j'ai besoin d'aide oiur la question 4 je comprends rien, c'est pour demain merci d'avance ​

Bonjour Jai Besoin Daide Oiur La Question 4 Je Comprends Rien Cest Pour Demain Merci Davance class=

Sagot :

Réponse :

Explications étape par étape :

4.a)

[tex]f(0) = 0[/tex]

[tex]f(\frac{77}{9}) = -\frac{9}{20} \times \frac{77^2}{9^2} + \frac{77}{20} \times \frac{77}{9} =0[/tex]

Ces deux valeurs correspondent respectivement à la sortie du jet d'eau (hauteur = 0 pour une distance = 0) et la distance de la sortie du jet d'eau où le jet retouche le sol.

b)

[tex]-\frac{9}{20}(x-\frac{77}{18})^2 + \frac{5929}{720}= -\frac{9}{20} (x^2 + \frac{5929}{324} - \frac{154x}{18}) + \frac{5929}{720}\\\\=-\frac{9}{20}x^2 - \frac{5929}{720} + \frac{77x}{20}+ \frac{5929}{720}\\\\=-\frac{9}{20}x^2 + \frac{77x}{20}\\\\= f(x)[/tex]

c)

est négative car un carré un toujours positif.

d)

De la question précédente, on déduit que f(x) atteint sont maximum quand [tex]-\frac{9}{20}(x-\frac{77}{18})^2[/tex] est le plus petit possible... C'est à dire, quand il vaut zéro, ce qui arrive quand [tex]x = \frac{77}{18}[/tex]

e)

Le maximum est atteint quand [tex]x = \frac{77}{18}[/tex], f vaut alors [tex]\frac{5929}{720}[/tex]

Merci de nous avoir fait confiance pour vos questions. Nous sommes ici pour vous aider à trouver des réponses précises rapidement. Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Laurentvidal.fr, votre site de référence pour des réponses précises. N'oubliez pas de revenir pour en savoir plus.