Découvrez les réponses à vos questions facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Découvrez des réponses complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale. Découvrez la facilité d'obtenir des réponses rapides et précises à vos questions grâce à l'aide de professionnels sur notre plateforme.
Sagot :
Bonjour :))
[tex]f\text{ est la fonction d\'efinie sur }\mathbb R\text{ par:}\\f(x)=0,15x^{5}-2x^{3}+12x+200\\\\1.\ a)\ f'(x)=(5\times 0,15)x^{4}-(2\times 3)x^{2}+12\\\boxed{\bf{f'(x)=0,75x^{4}-6x^{2}+12}}[/tex]
[tex]b)\ \boxed{\bf{f''(x)=(f'(x))'=3x^{3}-12x}}[/tex]
[tex]2.\ a)\ f''(x)=3x^{3}-12x=3x(x^{2}-4)\\3x\text{ s'annule pour }x=0\\x^{2}-4\text{ s'annule pour }x=-2\ OU\ x=2\\\\\textbf{Voir ci joint tableau de signe f''(x) et variation de f'(x)}[/tex]
[tex]b)\ \lim_{x \to -\infty} f'(x)=+\infty\ \ et\ \ \lim_{x \to +\infty} f'(x)=+\infty\\\\Astuce\ pour\ trouver\ ces\ limites:f'(x)=x^{4}(0,75-\frac{6}{x^{2}}+\frac{12}{x^{4}})} \\\\\text{D'apr\`es les variations de }f'(x)\text{ et l'utilisation du th\'eor\^eme}\\\text{des valeurs interm\'ediaires, nous pouvons dire que : }\\f'(x)\ge0\ \forall x\in\mathbb R[/tex]
[tex]c)\ f'(x)\ge0\ pour\ x\in\mathbb R.\text{ Donc }f(x)\text{ est strictement croissante}\\\text{sur }\mathbb R.[/tex]
Si tu as des questions, n'hésite pas à revenir vers moi :)
Bonne continuation
Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci d'utiliser Laurentvidal.fr. Revenez pour obtenir plus de connaissances de nos experts.