Laurentvidal.fr facilite la recherche de réponses à toutes vos questions avec l'aide de notre communauté active. Trouvez des réponses rapides et fiables à vos questions grâce à l'aide d'experts expérimentés sur notre plateforme conviviale. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

Bonsoir j'aurais vraiment besoin d'aide s'il vous plaît pour cet exercice en math. Je n'y arrive pas du tout. Merci par avance à ceux qui voudront bien m'aider^^

Un laboratoire pharmaceutique fabrique un produit solide conditionné sous la forme d’un parallélépipède rectangle (appelé aussi pavé droit) dont le volume est 576 mm^3 . On note y la hauteur ; ses autres dimensions sont x et 2x (x et y sont en mm) et x doit être nécessairement compris entre 3 et 12 mm.

1) Calculer y pour x = 4 mm.
2) Exprimer y en fonction de x.
3) On note S(x) la surface totale du parallélépipède rectangle en mm^2 .
Montrer que, pour tout réel x appartenant à [3 ; 12], S(x) = 1728/x + 4x^2 .
4) Soit S la fonction qui à x associe S(x) sur l’intervalle [3 ; 12] et S′ sa dérivée.
Exprimer S ′ (x) pour tout réel x appartenant à [3 ; 12]
Etudier le signe de S ′ (x) sur [3 ; 12], puis dresser le tableau de variation de S sur [3 ; 12].
5) Quelles dimensions doit-on donner à ces produits pour que leur surface ait une aire minimale ? Justifier

Sagot :

Réponse :

Explications étape par étape :

1) le volume d'un parallélépipède rectangle est donné par la formule : Volume = Longueur x largeur x hauteur, dans notre cas, on a :

[tex]V = 2x \times x \times y = 2x^2\times y = 576[/tex]

soit pour x = 4

[tex]32y = 576\\y = 18[/tex]

2) y en fonction de x:

[tex]y = \frac{576}{2x^2} = \frac{288}{x^2}[/tex]

3) La surface totale est égale à la somme des surfaces de chaque face du parallélépipède

[tex]S(x) = 2\times 2x \times x + 2 \times xy + 2 \times 2xy\\\\S(x) = 4x^2 + \frac{576}{x} + \frac{1152}{x}\\\\S(x) = 4x^2 + \frac{1728}{x}[/tex]

On note qu'on a remplacé y par la valeur trouvée précédemment.

4) Dérivée de S(x)

[tex]S'(x) = 8x - \frac{1728}{x^2}[/tex]

Etudier le signe de [tex]8x - \frac{1728}{x^2}[/tex] revient à étudier le signe de [tex]8x^3-1728[/tex] (on multiplie [tex]8x[/tex] par [tex]x^2[/tex] pour mettre au même dénominateur) car [tex]x^2 > 0.[/tex]

[tex]8x^3 - 1728 > 0\\8x^3 > 1728\\x^3 > 12[/tex]

Donc sur [3, 12], S'(x) est négative sur [3, 6[ et positive sur ]6, 12] (et nulle pour x = 6).

S(x) est donc décroissante sur [3, 6[  et croissante sur ]6, 12]

5) la surface est donc minimale quand S(x) atteint son minimum, c'est à dire pour x = 6. Les dimensions sont une hauteur de y = 8 mm et une base de 6 mm par 12 mm.

Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Laurentvidal.fr est là pour fournir des réponses précises à vos questions. Revenez bientôt pour plus d'informations.