Bienvenue sur Laurentvidal.fr, le site où vous trouverez des réponses rapides et précises à toutes vos questions. Découvrez des solutions fiables à vos questions grâce à un vaste réseau d'experts sur notre plateforme de questions-réponses complète. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses.

Bonsoir je suis un peu perdu j’aurais besoin d’aide merci
Exercice 3
Soit (0,1,j) un repère orthonormal du plan.
Soit A(-1,-4), B(3; -2) et C(-4;2) trois points du plan
1. Déterminer l'équation de la droite (AB)
2. Déterminer l'équation de la droite (AC)
3. Montrer que les droite (AB) et (AC) sont perpendiculaires
4. Déterminer l'équation de la droite (d) passant par B et parallèle à (AC)
5. Déterminer l'équation de la droite (d') passant par c et perpendiculaire à (AC)
6. Déterminer les coordonnées de D intersection de (d) et (d')

Sagot :

Mozi

Bonsoir

Soit a, b deux réels tel que y = ax + b soit l'équation de la droite (AB)

A∈(AB) ⇔ [tex]y_{A} = a x_{A} + b[/tex] et [tex]y_{B} = a x_{B} + b[/tex]

⇔ [tex]y_{B} - y_{A} = a * (x_{B} - x_{A})[/tex]

⇔ a = [tex](y_{B} - y_{A})[/tex] / [tex](x_{B} - x_{A})[/tex] = (-2 +4) / (3 +1) = 1/2

de [tex]y_{A} = a x_{A} + b[/tex] on peut déduire b = -4 + 1/2 * 1 = -7/2

y = 1/2 x - 7/2

L'équation de la droite (AB) est donc y = x/2 - 7/2

2. Soit y = a'x + b' l'équation de la droite (AC)

a' = (yC - yA) / (xC - xA) = (2+4)/(-4+1) = -6/3 = -2

b' = yC - a' * xC = 2 - 2 * 4 = -6

l'équation de (AC) est donc y = -2 x - 6

3. L'équation cartésienne de (AB) est x - 2y - 7 = 0

Celle de (AC) est 2x + y +7 =0

Soit u le vecteur normal de (AB) et v celui de (AC)

On a u(1 ; -2) et v(2 ; 1)

Le produit scalaire de u et v est u.v = 1*2 -2*1 =0

Les vecteurs sont donc orthogonaux ce qui permet de conclure que les droites sont perpendiculaires.

4. (d) e (AC) ont le même facteur directeur.

L'équation de (d) s'écrit donc y = -2x + m

avec m = yB + 2 xB = -2 + 6 = 4

L'équation de (d) est donc y = -2x + 4

5. (d') ⊥ (AC) donc le produit de leurs coefficients directeurs est = -1

le coefficient directeur de (AC) est -2, celui de 9d') est donc 1/2 et son équation est y = x/2 + m'

avec m' = yB - xB/2 = -2 - 3/2 = -7/2

6. on a -2 xD + 4 = xD/2 -7/2

soit -4 xD + 8 = xD - 7

ou encore 5 xD = 15

Soit xD = 3

yD = -6 + 4 = -2

Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Vos questions sont importantes pour nous. Revenez régulièrement sur Laurentvidal.fr pour obtenir plus de réponses.