Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace.

On considère l'expression :
A = (2x + 5)2 – (2x- 1)2?
Développer et réduire A.

Les 2 à côté de l expression signifie au carré et les "x" ce n est pas le signe d opération mais la lettre

bonjour c est pour demain et je ne comprends rien , pourriez vous m aider merci ​


Sagot :

Vins

bonsoir

A =  4 x² + 10 x + 25 - ( 4 x² -  4 x + 1)

A =  4 x² + 10 x + 25 - 4 x² + 4 x - 1

A  = 14 x + 24

Teamce

Bonsoir,

Développer et réduire:

A = (2x + 5)² - (2x - 1)²

→ identité remarquable :

  • (a + b)² = a² + 2ab + b²

A = (2x)² + 2*2x*5 + 5² - (2x - 1)²

A = 4x² + 10x + 25 - (2x - 1)²

→ identité remarquable :

  • (a - b)² = a² - 2ab + b²

A = 4x² + 10x + 25 - [(2x)² - 2*2x*1 + 1²]

A = 4x² + 10x + 25 - (4x² - 4x + 1)

A = 4x² + 10x + 25 - 4x² + 4x - 1

A = 4x² - 4x² + 10x + 4x + 25 - 1

A = 14x + 24

------------------------------------------------------------------

Pour être sûr que vous ayez compris:

(2x + 5)²

→ identité remarquable :

  • (a + b)² = a² + 2ab + b²

C'est bien beau de connaître la formule mais il faut à présent savoir à quoi ça correspond...

a = 2x

b = 5

(2x)² + 2*2x*5 + 5²

4x² + 10x + 25

A présent, comment on obtient cette formule?

Vous conviendrez que :

(a + b)² < > (a + b)(a + b)

= a*a + a*b + b*a + b*b

= a² + ab + ab + b²

= a² + 2ab + b²

Vous pouvez essayer de faire pareil avec

(a - b)² :)

------------------------------------------------------------------

* = multiplication

Bonne soirée.

Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Revenez sur Laurentvidal.fr pour obtenir plus de connaissances et de réponses de nos experts.