Bienvenue sur Laurentvidal.fr, où vous pouvez obtenir des réponses fiables et rapides grâce à nos experts. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme.

Bonsoir pouvez-vous m’aider s’il vous plaît

Bonsoir Pouvezvous Maider Sil Vous Plaît class=

Sagot :

Bonjour :))

[tex]\textbf{\underline{Exercice a).}}\\\\\ln(\frac{5x+1}{x-2})\le0\\\\\underline{Condition\ d'existence}:\ \frac{5x+1}{x-2}>0\ car\ ln(x)\ est\ d\'efinie\\\forall\ x>0.\ Donc,\ le\ domaine\ d'\'etude\ est\ ]-\infty;-\frac{1}{5}[\cup]2;+\infty[.\\\\\ln(\frac{5x+1}{x-2})\le0\\\\\Leftrightarrow \frac{5x+1}{x-2}\le e^{0}\\\\\Leftrightarrow \frac{5x+1}{x-2}-1\le0\\\\\Leftrightarrow \frac{4x+3}{x-2}\le0[/tex]

[tex]x-2\ s'annule\ pour\ x=2,\ positive\ ou\ nulle\ pour\ x\ge2\\et\ n\'egative\ ou\ nulle\ pour\ x\le2\\\\ATTENTION:\ 2\ est\ valeur\ interdite\ dans\ notre\ cas.\\\\4x+3\ s'annule\ pour\ x=-\frac{3}{4},\ positive\ ou\ nulle\ pour\ x\ge-\frac{3}{4}\\et\ n\'egative\ ou\ nulle\ pour\ x\le-\frac{3}{4}[/tex]

[tex]\frac{4x+3}{x-2}\le0\ pour\ x\in[-\frac{3}{4};2[\ mais\ cet\ ensemble\ n'est\ pas\\compl\`etement\ inclu\ dans\ le\ domaine\ d'etude\ ]-\infty;-\frac{1}{5}[\cup]2;+\infty[\\\\Donc\ \boxed{S=[-\frac{3}{4};-\frac{1}{5}[}[/tex]

[tex]\textbf{\underline{Exercice b).}}\\\\\ln(x^{2}+2x)-1>0\\\\\underline{Condition\ d'existence}:\ x^{2}+2x>0\ donc\ x(x+2)>0\\Le\ domaine\ d'\'etude\ est\ x\in]-\infty;-2[\cup]0;+\infty[\\\\\ln(x^{2}+2x)>1\\x^{2}+2x>e^{1}\\x^{2}+2x-e<0\\\\x_1=-1-\sqrt{1+e}\ \ \ \ et\ \ \ \ x_2=-1+\sqrt{1+e}\\On\ remarque\ que\ x_1,x_2\in domaine\ \'etude.\\\\\boxed{S=]-\infty;x_1[\cup]x_2;+\infty[}[/tex]

[tex]\textbf{\underline{Exercice c).}}\\\\6e^{x}-1\ge 3-4e^{x}\\10e^{x}\ge4\\e^{x}\ge \frac{4}{10}\\\\x\ge \ln(0,4)\\\\\boxed{S=[\ln(0,4);+\infty[}[/tex]

[tex]\textbf{\underline{Exercice d).}}\\\\3e^{2x}-9e^{x}<0\\\\\Leftrightarrow 3(e^{x})^{2}-9e^{x}<0\ \ \ \ On\ pose\ X=e^{x}\\\\\Leftrightarrow 3X^{2}-9X<0\\\\\Leftrightarrow 3X(X-3)<0\\\\X\in]0;3[[/tex]

0<X<3 ce qui donne 0<e^{x}<3 donc x < ln(3), on a donc : S=]-infini; ln(3)[

N'hésite pas à revenir vers moi pour répondre à tes questions :))

Bonne continuation ;)

Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Visitez Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.