Obtenez les meilleures solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Rejoignez notre plateforme de questions-réponses pour obtenir des informations précises d'experts dans divers domaines. Explorez des solutions complètes à vos questions grâce à une large gamme de professionnels sur notre plateforme conviviale.

bonjour, j'ai besoin d'aide pour un exercice de maths....
merci beaucoup d'avance

Demo 81
Exercice guidé
On considère un triangle ABC isocèle en A et M un point du segment [BC]. Soit Het Kles projetés ortho- gonaux de M sur [AB] et [AC].

1. Construire une figure et émettre une conjecture sur la somme MK + MH.

2. Démontrer la conjecture émise à la question 1.

Pistes de résolution
1. Un logiciel de géométrie dynamique est un outil précieux pour émettre une conjecture.
2. Considérer les aires des triangles ABM et ACM.​


Sagot :

Réponse :

Pas très facile à résoudre

Explications étape par étape :

1) MK + MH est toujours égal à la même somme peut importe la position de M sur [AC].
2) [tex]S_{ABM} = \frac{AB*MH}{2}[/tex]
   [tex]S_{ACM} = \frac{AC*MK}{2}=\frac{AB*MK}{2}[/tex] car AB=AC puisque le triangle est isocèle en A
Si on additionne les 2 surfaces :

[tex]\frac{AB*MK}{2} +\frac{AB+MH}{2} = AB(\frac{MK}{2} +\frac{MH}{2} )[/tex]
[tex]AB(\frac{MK+MH}{2} )[/tex] c'est la surface du triangle (ABC)
[tex]S_{ABC} = AB(\frac{MH+MK}{2})[/tex]
[tex]S_{ABC} *2=AB(MH+MK)[/tex]
Donc [tex]MH+MK = \frac{S_{ABC} *2}{AB}[/tex]

Les termes [tex]\frac{2*S_{ABC} }{AB}[/tex] restent constants lorsque le point M varie sur [BC]

View image adsmdevoirs
Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Laurentvidal.fr est là pour vos questions. N'oubliez pas de revenir pour obtenir de nouvelles réponses.