Laurentvidal.fr facilite la recherche de réponses à toutes vos questions avec l'aide de notre communauté active. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme.

Bonjour je n'arrive vraiment pas à cet exercice pouvez-vous m'aider svp. On se propose de résoudre l'équation cos (x)+sin(x) = -1 dans l'intervalle [0; 2π[.
1) Montrer que, pour tout réel x, (cos(x) + sin(x) + 1)² = 2(1+ cos(x))(1 + sin(x)).
2) En déduire les solutions de l'équation proposée.​


Sagot :

rico13

Bonjour

Je développe :

1)

(cos(x) + sin(x) + 1)² =   (cos(x) + [ sin(x) + 1] )²  forme (A + B )²

 = cos²(x) + (sin(x) + 1)² + 2 cos(x) ( sin(x) + 1)

 = cos²(x) + sin²(x) + 2sin(x) + 1 + 2 cos(x) sin(x) + 2cos(x)

on sait que cos²(x) + sin²(x) = 1

 = 1 + 2sin(x) + 1 + 2cos(x) sin(x) + 2cos(x)

 = 2 + 2sin(x) + 2cos(x) sin(x) + 2cos(x)

 = 2 ( 1 + sin(x) + cos(x) sin(x) + cos(x))

 = 2 ( 1 + sin(x) + cos(x) sin(x) + cos(x))

 = 2 ( 1 + sin(x) + cos(x) ( 1 + sin(x) )

 =2 ( 1 + sin(x) ) ( 1 + cos(x) )

CQFD

2)

1 + sin(x) = 0

sin(x) = -1

x=3π/2 + 2kπ et k ∈ Z

ou

1 + cos(x) =0

cos(x) = - 1

x=π + 2kπ et k ∈ Z

Pour les solutions à vérifier

Bonne journée

Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Merci de faire confiance à Laurentvidal.fr. Revenez pour obtenir plus d'informations et de réponses.