Découvrez les réponses à vos questions facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés.

Bonsoir

Pouvez-vous m’aider svp.
Merci beaucoup ;)


Bonsoir Pouvezvous Maider Svp Merci Beaucoup class=

Sagot :

Salut Elo :)

Partie A : la règle des 72

  • Question 1

[tex]Pour\ t=1\%,\ on\ a:\ n=\frac{72}{1}=72\ ans\\\\Pour\ t=5\%,\ on\ a:\ n=\frac{72}{5}=14,4\approx15\ ans\\\\Pour\ t=10\%,\ on\ a:\ n=\frac{72}{10}=7,2\approx8\ ans[/tex]

  • Question 2,a

[tex]Pour\ t=1\%,\ on\ a:\\(1+\frac{1}{100})^{n}\ge2\\\\n*ln(1+\frac{1}{100})\ge\ ln(2)\\\\n\ge\ \frac{ln(2)}{ln(1+\frac{1}{100})}\approx70\ ans\\\\Pour\ t=5\%,\ on\ a:\\(1+\frac{5}{100})^{n}\ge2\\\\n*ln(1+\frac{5}{100})\ge\ ln(2)\\\\n\ge\ \frac{ln(2)}{ln(1+\frac{5}{100})}\approx15\ ans\\\\Pour\ t=10\%,\ on\ a:\\(1+\frac{10}{100})^{n}\ge2\\\\n*ln(1+\frac{10}{100})\ge\ ln(2)\\\\n\ge\ \frac{ln(2)}{ln(1+\frac{10}{100})}\approx8\ ans[/tex]

  • Question 2,b

[tex]\text{Nous retrouvons les m\^emes r\'esultats avec les deux m\'ethodes sauf pour}\\\text{le cas o\`u t=1}\%.\\\\\text{La r\`egle des 72 semble mieux fonctionner pour des valeurs de t}\ge1\%[/tex]

Partie B : une autre estimation

  • Question 1,a

[tex]Rappel\ d\'eriv\'ee:\\(ln(u))'=\frac{u'}{u}\\\\f'(x)=\frac{1}{1+x}-1+x\\\\f'(x)=\frac{x^{2}}{1+x}\ \forall x\in\mathbb R\ sauf\ (-1)\\\\x^{2}\ge0\ sur\ x\in\mathbb R\\\\1+x>0\ sur\ x\in[0;+\infty]\\\\f'(x)\ge0\ sur\ x\in[0;+\infty]\\\\f(x)\ est\ strictement\ croissant\ sur\ l'intervalle\ [0;+\infty]\\\\g'(x)=\frac{1}{1+x}-1\\\\g'(x)=\frac{-x}{1+x}\ \forall x\in\mathbb R\ sauf\ (-1)\\\\g'(x)\le0\ sur\ [0;+\infty]\\\\g(x)\ est\ strictement\ d\'ecroissante\ sur\ [0;+\infty][/tex]

  • Question 1,b

[tex]f(0)=0\ et\ f(x)\ est\ strictement\ croissant\ sur\ [0;+\infty]\\Donc\ f(x)\ge0\ sur\ [0;+\infty]\\\\Ce\ qui\ donne:\\ \Leftrightarrow ln(1+x)-x+\frac{x^{2}}{2}\ge0\\\\\Leftrightarrow \boxed{ln(1+x)\ge x-\frac{x^{2}}{2}}[/tex]

[tex]g(0)=0\ et\ f(x)\ est\ strictement\ d\'ecroissante\ sur\ [0;+\infty]\\Donc\ g(x)\le0\ sur\ [0;+\infty]\\\\Ce\ qui\ donne:\\ \Leftrightarrow ln(1+x)-x\le0\\\\\Leftrightarrow \boxed{ln(1+x)\le x}[/tex]

[tex]\forall x\in [0;+\infty],\ x-\frac{x^{2}}{2}\le ln(1+x)\le x[/tex]

  • Question 2,a

[tex]On\ sait\ que\ n=\frac{ln(2)}{ln(1+\frac{t}{100})}\\\\ln(1+x)\approx x\ \Rightarrow ln(1+\frac{t}{100})\approx \frac{t}{100}\\\\Donc\ n=\frac{ln(2)}{\frac{t}{100}}=\frac{ln(2)*100}{t}\approx \frac{70}{t}[/tex]

  • Question 2,b

[tex]Pour\ doubler,\ on\ avait:\ (1+\frac{t}{100})^{n}\ge2\\\\Pour\ tripler,\ on\ a:\ (1+\frac{t}{100})^{n}\ge3\\\\Donc\ n=\frac{ln(3)}{ln(1+\frac{t}{100})}\approx \frac{ln(3)}{\frac{t}{100}}\approx \frac{110}{t}[/tex]

J'espère que ceci te conviendra ! n'hésite pas à revenir vers moi si tu bloques encore sur des trucs, je peux répondre à tes questions :))

Bonne continuation :))

Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Laurentvidal.fr, votre site de confiance pour des réponses. N'oubliez pas de revenir pour plus d'informations.