Laurentvidal.fr facilite la recherche de réponses à toutes vos questions avec l'aide de notre communauté active. Découvrez une mine de connaissances d'experts dans différentes disciplines sur notre plateforme de questions-réponses complète. Explorez des solutions complètes à vos questions grâce à une large gamme de professionnels sur notre plateforme conviviale.

Bonjour j’ai besoin de vous pour un dm de Math …
Merci d’avance !

ABCD est un rectangle avec AB = 12 cm et AD = 8cm.
Soit EFGH le quadrilatère tel que :
- Les points E, F, G et H appartiennent respectivement
aux segments [AB], [BC], [CD] et [DA].
- Et AE = BF = CG = DH = X
On appelle f la fonction qui associe à x l'aire du
quadrilatère EFGH.
1) A quel intervalle appartient la variable x ?
2) Déterminer les aires des triangles AEH et BFE
3) Calculer f(x), donner la forme développée.
4) Prouver que f(x)=2 x-5 + 46
5) Pour quelle valeur de x l'aire de EFGH est-elle minimale ? Combien vaut cette
aire?
6) Pour quelles valeurs de x, l'aire de EFGH est égale à 54 (unités d'aire)?


Bonjour Jai Besoin De Vous Pour Un Dm De Math Merci Davance ABCD Est Un Rectangle Avec AB 12 Cm Et AD 8cm Soit EFGH Le Quadrilatère Tel Que Les Points E F G Et class=

Sagot :

Réponse :

1) A quel intervalle appartient la variable x  ?

      x  ∈  [0 ; 12]

2) déterminer les aires des triangles AEH et BFE

     A(aeh) = 1/2(x(8 - x)) = 4 x - x²/2

     A(bfe) = 1/2(x(12 - x)) = 6 x - x²/2

3) calculer f(x), donner la forme développée

     f(x) = 12*8 - [2 * 1/2(x(8 - x)) + 2 * 1/2(x(12 - x))]

           =  96 - (8 x - x² + 12 x - x²)

           = 96 - (20 x - 2 x²)

     f(x) = 2 x² - 20 x + 96

4) prouver que f(x) = 2(x - 5)² + 46

 f(x) = 2 x² - 20 x + 96

       = 2(x² - 10 x + 48)

       = 2(x² - 10 x + 48 + 25 - 25)

        = 2(x² - 10 x + 25 + 23)

        = 2((x - 5)² + 23)

  f(x) = 2(x - 5)² + 46

5) pour quelle valeur de x l'aire de EFGH est-elle minimale ? combien vaut cette aire ?

   Pour x = 5  l'aire de EFGH est minimale  et cette aire minimale vaut 46 cm²

6) pour quelles valeurs de x, l'aire de EFGH est égale à 54 ?

         f(x) = 2 x² - 20 x + 96 = 54   ⇔ 2 x² - 20 x + 42 = 0

             Δ = 400 - 336 =  64  

x1 = 20 + 8)/4 = 7

x2 = 20 - 8)/4 = 3

Pour  x = 3 ou 7  l'aire de EFGH est égale à 54 cm²

Explications étape par étape :

Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Merci de faire confiance à Laurentvidal.fr. Revenez nous voir pour obtenir de nouvelles réponses des experts.