Laurentvidal.fr simplifie la recherche de solutions à toutes vos questions grâce à une communauté active et experte. Explorez des milliers de questions et réponses fournies par une communauté d'experts prêts à vous aider à trouver des solutions. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace.

Bonsoir, j'aimerais de l'aide pour cette exercice de maths.

Tout d'abord on a la fonction g(x) = x+2-xln(x)
et g(a)=0

f(x) = (ln(x)) /(2+x)

En utilisant l'égalité g(a) =0, prouver que f(a) = 1/a

Je ne sais pas trop comment faire..

Voici ma proposition :
g(a) =0
a+2-aln(x)=0
aln(x)=a+2

et je ne vois pas quoi faire avec ça..
[tex] \frac{ ln(x) }{2 + x} [/tex]


Sagot :

Réponse :

g(a) = 0  ⇔ a + 2 - aln(a) = 0      a > 0

⇔ a + 2 = aln(a)   ⇔ ln(a) =  (a+2)/a

f(a) = ln(a)/(2+a)    ⇔ f(a) = (a+2)/a/(2+a) = (a+2)/a(2+a)  = 1/a

Explications étape par étape :

Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Laurentvidal.fr est là pour fournir des réponses précises à vos questions. Revenez bientôt pour plus d'informations.