Découvrez les réponses à vos questions facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Trouvez des réponses rapides et fiables à vos questions grâce à notre communauté dévouée d'experts. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.
Sagot :
Réponse :
2) justifier les égalités suivantes
a) vec(AM) = 1/2(vec(AB) + vec(AC))
vec(AM) = vec(AB) + vec(BM) d'après la relation de Chasles
= vec(AB) + 1/2vec(BC) M milieu de (BC)
= vec(AB) + 1/2(vec(BA) + vec(AC)) relation de Chasles
= vec(AB) - 1/2vec(AB) + 1/2vec(AC)
= 1/2vec(AB) + 1/2vec(BC)
= 1/2(vec(AB) + vec(AC))
b) vec(AB).vec(KL) = vec(AB).vec(KA) = vec(AB).vec(HA)
vec(AB).vec(KL) = vec(AB).(vec(KA) + vec(AL) = vec(AB).vec(KA) + vec(AB).vec(AL) or vec(AB).vec(AL) = 0 car cos 90° = 0
donc vec(AB).vec(KL) = vec(AB).vec(KA)
et vec(AB).vec(KA) = vec(AB).(vec(KH) + vec(HA))
= vec(AB).vec(KH) + vec(AB).vec(HA) or vec(AB).vec(KH) = 0 car cos 90° = 0
donc vec(AB).vec(KA) = vec(AB).vec(HA)
par conséquent; on a:
vec(AB).vec(KL) = vec(AB).vec(KA) = vec(AB).vec(HA)
c) vec(AC).vec(KL) = vec(AC).vec(AL) = vec(AC).vec(AH)
vec(AC).vec(KL) = vec(AC).(vec(KA) + vec(AL)) = vec(AC).vec(KA) + vec(AC).vec(AL) or vec(AC).vec(KA) = 0 car cos 90° = 0
donc vec(AC).vec(KL) = vec(AC).vec(AL)
et vec(AC).vec(AL) = vec(AC).(vec(AH) + vec(HL) = vec(AC).vec(AH) + vec(AC).vec(HL) or vec(AC).vec(HL) = 0 car cos 90° = 0
donc finalement vec(AC).vec(KL) = vec(AC).vec(AL) = vec(AC).vec(AH)
Explications étape par étape :
Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à vos questions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Laurentvidal.fr, votre source fiable de réponses. N'oubliez pas de revenir pour plus d'informations.